
AD-A241 691li 111 I i i li ll '
ANNUAL REPORT

VOLUME 1
PART 1

TASK 1: DIGITAL EMULATION TECHNOLOGY LABORATORY

REPORT NO. AR-0142-91-001

September 27, 1991

DIGITAL EMULATION TECHNOLOGY LABORATORY

Contract No. DASG60-89-C-0142

Sponsored By

The United States Army Strategic Defense Command

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology

Atlanta, Georgia 30332 - 0540

Contract Data Requirements List Item A005

Period Covered: FY 91

Type Report: Annual

91-12567iirl i II ![i ii Al I

D <LAIMEI NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFCANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

UNCLASSIFIED

~[Cuioii Ar, v - ---

REPORT DOCUMENTATION PAGE OMIT O 1 '1 01 99
lit REPORT SECuFilyy CLASSIFICATION lb RESTRICTIVE MARKINGS
Unclassified

-71 SECURITY CLASSIFICATION AUTHORITY 3 DISTRIAIJION/AVAILABILITY OF REPORT
I)Approved for public release; dist rih'di i'

2b OECLASSIFICATIONIDOWNGRAOINJG SCHEDULE iS uTIl imited
2) continued on reverse side

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMFIER(S)

AR-0 142-91-002
6a1 NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
School of Electrical Eng. If 1pplicatle)

Georgia Tech JU.S;. Army Strategic De-feonse Comninid
Fc ADDRESS (City, State, and ZIP Code) 7b ADDRE SS (City. Sta re, and ZIP Code)

Atlanta, Georgia 30332 P.O. Box 1500
Huntsville, AL 35807-380!

Ra NAP.I OF FUNDING t5PONSORING 19b orrFI Ey '11O q Poc E fMN C~~CI~ 4ulyv1a
ORANIZATI"I

1 (It appivcable) DASG6-89-C-0 142

FIC ACDO)RESS(City. State. and ZI1P Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PRO)ECT 1ASK Wvonl UNIT1
ELEMENT !4O. NO NO ACSIr

II I I I t rc hde Socurt) l uIcqto,
(;tiidance, Navigation anid Control Digital Emulation Technology Laboratory
Volume I (Unclassified) Part 1 2 and 3

12 FERPSONAL AU? NIOR(S)
C. 0. Alford , Thomas R. Collins , Stephen R. Wachtel

Il IA; ~oF REPORT 13b TIME COVERED 14 DAt or RF'ORTy (Year, Month, Oay) I5 PAGE COUNT
_______I_ A FRM !/2/9 0 10171911 9/27/91 44

is; stirLE !.ENTARY NOTATION

I7 (OSAII CODES 18 SUpjECT TEAMS (Continue on rev'erie if necesay arid identify by block number)
FIELD GROUP [iUBGROUP

19 #ARSIPACT (Continue on reverie if necessary arid identify by block number)

Part I '-. Software Development Tools
1. Introduction 4.1 Introduction

1.1 Objectives 4.2 Sequential Programming
.2 Schedules & Milestones Tools

2. Hardware & Facilities 4.3 Parallel Programming To,
2.1 Parallel Function Processor 4.4 Sepcial purpose tools
2.2 Seeker Scene Emulator 5. Application Software
2.3 Other computer systems 5.1 EXOSIM
2 .4 Secure Laboratory 5 .2 LEA P

3. FPP/FPX Development Tools 6. Appendix A: Environment Fil,
3.1 Introduct ion Format
3.2 FPP/FPX object module loader Appendix B: Vicid Program
3.3 FPP/FPX program dowriloader Source (over)

2o' visiTRimr?)IOAVAItA911ITY Or ANSTRACT 21I ABSTRACT SECURITY CLASSIFICATION
rUNCLASsiI(ID'UNLIMItED Ui SAME AS rT F-1 i sf e *r"n. Ifr,, I

NAEOf RSPONSIBLE INDIVInUAL 22b TELEPHrIONE (incude Area Code) 122C OFFICE SYMBOL

IvD ratm 1473, JUN 85 I'rovout editirrii ore obicifete SECURITY CLASSIFICATION OF Imis(PAGE

UNCLASSIFIED

, ,'c-rity 0!I n o t i page

Distribution statement continued
2) 'hi material may be reproduced by or for the U.S. fovernment pursuant to the copy

license under the clause at DFARS252.227-7013, October 1988. U

Abstract (continued)

Part 2 I

9. Appendix D: common program source
10. Appendix E: ct 4 mer program source
11. Appendix F: declare program source
12. Appendix G: equivalence program source
13. Appendix H: etime program source
4. Appendix I: initial program source

15. Appendix J: namelist program source
16. Appendix K: network program source
17. Appendix L: structure program source
18. Appendix M: usage program source

Part 3 1
19. Appendix N: EXOSIM 2.0 (End-to-end) I

I
I
I
I
I
I
a
I
I
U

UNCLASSIFIED

b" -o"U TF- -C'99 I~tonof this Page

I

DISCLAIMER

DISCLAIMER STATEMENT - The views, opinions, and/or findings
contained in this report are those of the author(s) and should not be
construed as an official Department of the Army position, policy, or
decision, unless so designated by other official docuinieitation.

DISTRIBUTION CONTROL

(1) DISTRIBUTION STATEMENT - Approved for public release;
distribution is unlimited.

(2) This material may be reproduced by or for the U.S. Government
pursuant to the copyright license under the clause at DFARS 252.227
-7013, October 1988.

II

.. . .. '-. . .I

ANNUAL REPORT

VOLUME 1
PART 1

TASK 1: DIGITAL EMULATION TECHNOLOGY LABORATORY

September 27, 1991

Authors

Thomas R. Collins and Stephen R. Wachtel

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology

Atlanta, Georgia 30332 - 0540

Eugene L. Sanders Cecil 0. Alford

USASDC Georgia Tech

Contract Monitor Project Director

Copyright © 1991

Georgia Tech Research Corporation

Centennial Researcl Building

Atlanta, Georgia 30332

TABLE OF CONTENTS

PART 1

1. Introduction ... 1

1.1. Objectives ... 1
1.1.1. GN&C Test and Evaluation -- EXOSIM ... 3
1.1.2. Education and Technical Support ... 4

1.2. Schedules and milestones ... 5

2. Hardware and Facilities ... 9

2.1. Parallel Function Processor (PFP) .. 9
2.1.1. Physical Description ... 10
2.1.2. Intel 310 Host ... 12
2.1.3. Sun 386i Host .. 12

2.2. Seeker Scene Emulator (SSE) ... 12

2.3. Other computer systems ... 13

2.4. Secure laboratory ... 14

3. FPP/FPX Developm ent Tools .. 16

3. 1. Introduction .. 16

3.2. FPP/FPX object module loader .. 16

3.3. FPP/FPX program downloader .. 17

4. Software Developm ent Tools ... 18

4.1. Introduction .. 18

4.2. Sequential programming tools .. 18
4.2.1. INITIAL program ... 18
4.2.2. DECLARE program ... 21
4.2.3. STRUCtURE program .. 25
4.2.4. CTIM ER program ... 27

I

4.3. Parallel program ming tools 311
4.3.1. NETW ORK program .. 31
4.3.2. USAGE program .. 37
4.3.3. ETIM ER program ... 41

4.4. Special purpose tools ... 45
4.4. 1. NAM ELIST program ... 45
4.4.2. EQUIVALENCE program ... 46
4.4.3. COM M ON progiam ... 49
4.4.4. PROLOG utility ... 51

5. Application Software .. 63

5.1. EXOSIM .. 63
5.1.1. EXOSIM 1.0 .. 65
5.1.2. EXOSIM 2.0 .. 66

5.1.2.1. SSV 19.3 ... 70
5.1.2.2. SSV 19.5 ... 71
5.1.2.3. SSV 19.6 .. 74
5.1.2.4. SSV 19.7 and SSV 19.8 .. 76
5.1.2.5. SSV20.8 ... 77
5.1.2.6. SSV20.9 ... 78
5.1.2.7. SSV20 0 ... 80
5.1.2.8. 0 ... 81
5.1.2.9. 0 ... 85

5.1.2.10. 0 ... 88
5.1.2.11. v 4 ... 91
5.1.2.12. v ... 94
5.1.2.13. v 6 ... 98

5.1.2.14. SSV21.16 102
5.1.2.15. v 6 ... 103
5.1.2.16. SSV22.19 ... 108

5.2. LEAP ... 114

6. Appendix A: Environm ent file form at ... 117 1
7. Appendix B: vicid program source ... 119 3

I

I

I

PART 2

9. Appendix D: common progi-am source...1.

10. Appendix E: ctimer program source... 43

11. Appendix F: declare program source... 109

12. Appendix G: equivalence program source... 169

13. Appendix H: etimer program source ... 213

14. Appendix 1: initial program source... 285

15. Appendix J: namelist program source ... 328

16. Appendix K: network program source... 343

17. Appendix L: structure program source .. 393

18. Appendix M: usage program source ... 426

PART 3

19. Appendix N: EXOSIM 2.0 (End-to-end)..1.

LIST OF FIGURES

Figure 1.1: Major components of DETL 2
Figure 1.2: Task I Schedule and Milestones.. 7
Figure 3.1: Example use of old object module loader... 16
Figure 3.2: Example use of new object module loader ... 17
Figure 4. 1: INITIAL codes .. 19
Figure 4.2: INITIAL example makefile.. 20
Figure 4.3: INITIAL example input (EXAMPLE.F) ... 20
Figure 4.4: INITIAL example 1. output (EXAMPLE. 1).. 21
Figure 4.5: INITIAL example 2. output (EXAMPLE.2).. 21
Figure 4.6: DECLARE example makefile ... 23
Figure 4.7: DECLARE example input (EXAMPLE.F) ... 23
Figure 4.8: DECLARE example 1. output (EXAMPLE. 1)... 24
Figure 4.9: DECLARE example 2. output (EXAMPLE.2)... 25
Figure 4. 10: STRUCTURE example makefile .. 26
Figure 4.11: STRUCTURE example input (EXAMPLE.. 26
Figure 4.12: STRUC"TUPF example output (EXAMPLE.OUT) 27
Figure 4.13: CTIMER example makefile2 8
Figure 4.14: CTIMER example input (EXAMPLE.F.OLD) ... 28
Figure 4.15: CTIIMER example output (EXAMPLEF) . .. 29
Figure 4.16: CTIMER example output (CTIMER.TXT) ... 30
Figure 4.17: CTIMER example output (CTIMER.OUT)... 30
Figure 4.18: NETWORK example makefile... 32
Figure 4.19: NETWORK example input (BLOCKO.F)... 32
Figure 4.20: NETWORK example input (BLOCK L.F)... 33
Figure 4.21: NETWVORK example input (BLOCK2.F)... 33
Figure 4.22: NETWORK example input (BLOCK3.F) 34
Figure 4.23: NETWORK example 1. input (PRIORITY. 1) .. 34
Figure 4.24: NETWORK example 1. output (NETWORK. 1).. 34
Figure 4.25: NETWORK example 2. input (PRIORITY.2) .. 35
Figure 4.26: NETWORK example 2. output (NETWORK.2).. 35
Figure 4.27: NETWORK limitation 2. example .. 36
Figure 4.28: NETWORK limitation 3. example .. 36
Figure 4.29: NETWORK limitation 4. example .. 36
Fig-ure 4.30: USAGE example makefile ... 38
Figure 4.3 1: USAGE example input (BLOCKO.F) ... 38
Figure 4.32: USAGE example input (BLOCK L.. 39
Figure 4.33: USAGE example input (BLOCK2).. 39
Figure 4.34: USAGE example input (BLOCK3.F) ... 40
Figure 4.35: USAGE example output (SUMMARY.TXT)... 40
Figure 4.36: ETIMER example makefile 42
Figure 4.37. ETIMER example output (BLOCKO.. .. 42
Figure 4.38: ETIMER example output (BL.OCK IT) ... 43
Figure 4.39: ETIMER example output (BLOCK2.F)... 43

F
Figure 4.40: ETIMER example output (BLOCK3.F)... 44 1
Figure 4.41: ETIMER example output (ETIMER.TXT) .. 44
Figure 4.42: ETIMER example output (ETIMER.OUT) ... 45
Figure 4.43: NAM ELIST exam ple m akefile .. 46 I
Figure 4.44: NAMELIST example input (EXAMPLE.TXT) .. 46
Figure 4.45: NAMELIST eximple output (EXAMPLE.OUT) .. 46
Figure 4.46: EQUIVALENCE example makeffilc ... 47 I
Figure 4.47: EQUIVALENCE example input (EXAMPLE.F).. 48
Figure 4.48: EQUIVALENCE example output (EXAMPLE.OUT) 49
Figure 4.49: COM M ON exam ple m ,kefile ... 50 I
Figure 4.50: COMMON example input (EXAMPLE.F) .. 50
Figure 4.51: COMMON example output (EXAMPLE.OUT) .. 51
Figure 5.1: Evolution of EX O SIM ... 64
Figure 5.2: Process of porting Parallel EXOSIM 1.0 to a PFP with FPP boards 66
Figure 5.3: General partitioning strategy for EXOSIM 2.0 .. 69
Figure 5.4: 3-partition version of EXOSIM 2.0 ... 71
Figure 5.5: 5-partition version of EXOSIM 2.0 ... 73
Figure 5.6: 6-partition version of EXOSIM 2.0 ... 75
Figure 5.7: 8-partition version of EXOSIM 2.0 .. 77
Figure 5.8: 9-partition version of EXOSIM 2.0 .. 78 i
Figure 5.9: Timing of 10-partition version of EXOSIM 2.0 .. 79
Figure 5.10: 10-partition version of EXOSIM 2.0 ... 81
Figure 5.11: I-partition version of EXOSIM 2.0 ... 83 I
Figure 5.12: Timing of 1 1-partition version of EXOSIM 2.0 .. 84
Figure 5.13: 12-partition version of EXOSIM 2.0 .. 86
Figure 5.14: Timing o. 12-partition version of EXOSIM 2.0 .. 87
Figure 5.15: 13-partition version of EXOSIM 2.0 .. 89
Figure 5.16: Timing of 13-partition version of EXOSIM 2.0 .. 90
Figure 5.17: 14-partition version of EXOSIM 2.0 ... 92 I
Figure 5.18: Timing of 14-partition version of EXOSIM 2.0 93
Figure 5.19: Timing of 14-partition version of EXOSIM 2.0 95
Figure 5.20: Timing of 15-partition version of EXOSIM 2.0 .. 96 3
Figure 5.21: 15-partition version of EXOSIM 2.0 ... 97
Figure 5.22: 16-partition version of EXOSIM 2.0 .. 99
Figure 5.23: Timing of 15-partition version of EXC 31M 2.0 100
Figure 5.24: Timing of 16-partition version of EXOSIM 2.0 ... 101
Figure 5.25: 17-partition version of EXOSIM 2.0 ... 105
Figure 5.26: 18-partition version of EXOSIM 2.0 .. .107
Figure 5.27: 19-partition version of EXO SIM 2.0 ... 109
Figure 5.28: Timing of 19-partition version of EXOSIM 2.0 110 i

I
I
I
I

1. Introduction

The Digital Emulation Technology Laboratory (formerly referred to as the KEW Digital
Emulation Laboratory) is a principal unit within the Computer Engineering Research Laboratory
(CERL) at Georgia Tech. This report addresses the objectives, requirements, and schedule of the
Digital Emulation Technology Laboratory (DETL), relative to contract number DASG60-89-C-
0142. This contract concerns primarily activity associated with the effort to develop an
integrated hardware and software environment for end-to-end cmulations of exoatmospheric
interceptors such as EXOSIM. This includes the Georgia Tech Parallel Function Processor
(PFP) system software for the PFP (utilities and parallel programming tools), and application
software (EXOS!M). Some discussion of interfaces to specialized external hardware like the
Seeker Scene Emulator (SSE) will also be included.

1.1. Objectives

Within DETL, there are two main hardware systems: the Parallel Function Processor (PFP) and
the Secker Scene Emulator (SSE). Each of these systems is a complex parallel processor,
designed to function together as an emulation facility for kinetic energy weapons systems.
Software development is also an active area of research, both at the system level (compilers,
loaders, graphics development) and at the application level (simulation and emulation studies).

The principal objectives of DETL are as follows:

- Provide facilities for 6-DOF KEW emulaition

- Provide real-time capability in excess of 2000 Hz

- Provide real-time emulation of IR FPA seekers

- Test and verify GN&C software and hardware systems

- Educate new PFP users and provide technical support.

I
2 Annual Report: b.gital Emulation Technology Laboratory Volume 1, Part IGM

- m I

.....-- - - -

DIGITAL EMULATION TECHNOLOGY LABORATORY ,,,,,:,,I

Figure 1. 1: Major components of DETLI

'Me major components used in meeting these objectives include the PFP, SSE, and associated

conventional ccmputers for basic suppo~rt functions. Not all of ,these comiponent~s are required for
every task. For example, much of the or~oing research consists of running simulations
(sometimes real-Lime, sometlimes not) on the PFP, with no attached systems. This limited mode

I
I

1. Introduction 3

of operation is capable of verifying missile simulation models and control laws, as well as many
types of signal processing.

To provide realistic imagery in real-time, however, the Seeker Scene Emulator is required. This
system generates image data as though it were coming directly off of the elements of a focal-
plane array, with the scene information determined by the relative location of the simulated
missile system to the targets and decoys. Additional detail on the Seeke. Sccne Emulator may
be found in Volume 2 of this annual report.

Actual flight hardware may be tested within this system, as indicated by Figure 1.1. Most of the
items contained in the lower half of this figure represent VLSI components that may be tested
within DETL. The GT-DP blocks, for example, are chips for guidance and control processing
that are being developed at Georgia Tech. Similarly, the GT-SP block contains signal-processing
components developed at Georgia Tech. By equipping the hardware with appropriate interfaces
to the PFP, the simulated functions of the GN&C Processor can migrate from the PFP to the
actual hardware. These interfaces are also shown in the figure. Additional detail on the VLSI
components themselves may be found in Volume 4 of this annual report.

1.1.1. GN&C Test and Evaluation -- EXOSIM

The principle objective of DETL has always been to provide a facility in which guidance,
navigation, and control algorithms can be run at high speeds in order to assess their performance.
Recently, this has been served by implementing EXOSIM in various forms. EXOSIM is a
simulation of a representative exoatmospheric interceptor (ERIS baseline) which has evolved
from several earlier simulations, including KWEST and KEERIS. Unlike KWEST, which was
written in a combination of ACSL and FORTRAN, EXOSIM is written entirely in FORTRAN.
Unfortunately, the programming model for EXOSIM was not especially suited for a parallel
implementation, since it utilized an event-driven structure. This technique is often used to
enhance the performance of discrete-event simulations on single-processor systems, since it
eliminates the need to model small increments of time in which essentially nothing changes. For
a continuous system, however, there is little advantage in using an event-driven structure.

One of the subcontractors for this work (Dynetics) modified Version 1.0 of EXOSIM, changing
it from an event-driven structure to a time-driven structure. At the same time, it was made into
an unclassified version by replacing the data set and changing two routines. This modified
version of EXOSIM was first implemented at DETL and was described in the annual report for
this task in FY 1990. Briefly, we generated a set of guidelines for partitioning FORTRAN code
on the PFP and described a means of testing the partitions on a single-processor system.
Following these guidelines, Dynetics first produced a first-stage boost version of the modified
EXOSIM, partitioned for four processors. This program is called BOOSTI. They then produced
a first/second-stage boost version (BOOST2), partitioned for five processors. Both of these
programs ran correctly on the PFP, requiring only a simple procedure of splitting up the main
program along documented partitions and adding the appropriate communication instructions
(which is an automated process).

I
4 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

BOOST2 was subsequently altered at DETL in order to extract more parallelism, thus using more U
processors. Since the time of the last annual report, a vernion has been developed which runs on
27 processors at a speed uA 4 times real time (slower than real time by that factor). This version
used the 80386-based processors, which are not the fastest processors available for the PFP. I
Then, this version was ported to the newer Sun-hosted PFP, populated with a mix of 80386
processors and the AMD 29325/7-based FPP and FPX processor boards. This allowed the 3
simulation to run in real time.

The greatest thrust of the development effort during the past year, however, has been to analyze,
debug, and partition the newer version 2.0 of EXOSIM, running end-to-end (boost, midcourse,
and terminal modes of flight). This is described in detail within this report. Briefly, the basic
steps were: 3

1. Convert the event-driven structure to a time-driven structure more suitable
for the PFP,

2. Debug this single-processor version to produce a portable version, removing
VAX dependencies and uninitialized variables in the process,

3. Partition the code in stages, improving execution time, using 80386-based
processors,

4. Minimize double-precision requirements, and
5. Port some partitions to the FPP and FPX boards to achieve real-time

operation.

At this time, we are occupied with step 5, writing new compilers and tools to more fully utilize
the available processors. In the interest of demonstrating real-time performance of EXOSIM 2.0,
a boost-phase-only version of the partitioned program was spun off as a side effort and is now
running in real time. This complements an earlier midcourse/terminal-phase-only version which
was demonstrated in July 1991, running real-time in conjunction with the SSE and described in
volume 3 of this annual report. Taken together, these two versions (boost-phase-only and
midcourse/terminal-only) do not constitute an end-to-end simulation, since the 5
midcourse/terminal version only runs with preset data values.

1.1.2. Education and Technical Support 3
The Digital Emulation Technology Laboratory first presented a class on the programming and
operation of the PFP in December 1989. During the past year, a PFP has been delivered to the
KDEC facility at USASDC in Huntsville, Alabama. To support this facility, another two-day
PFP class was presented at KDEC, using their PFP, in April 1991. As before, the students were
emploces of USASDC and its contractors. The class included material on parallel processing
fundamentals, the PFP model of parallelism, PFP hardware, the host operating system, and
typical applications. Approximately three-fourths of the time was used for hands-on experience
with the PFP, a 50% increase from our first class, based on the opinions of our earlier I
participants.

To address the needs and concerns of potenti,i PFP users at KDEC, DETL provided a technical I
briefing on the PFP on July 26, 1991. This briefing was given to a blue-ribbon committee I

I

1. Introduction 5

reporting to Dr. E. L. Wilkinson through Doyce Satterfield, covered the PFP hardware, system
soft,,are, basic operation, software utilities, and application areas.

We also organized a technical committee, the Paraliel Simulation Technology Working Group.
This group includes members from SDC-affillated companies who can meet to discuss
simulation techniques, general parallel programming topics, PFP issues, and ongoing SDC
simulation work. The first meeting took place on August 15, 1990. The presentation topics at
that meeting are listed below.

Unique PFP Programming Considerations

Automatic crossbar/sequencer code generation (S. Wachtel -- Georgia Tech)

EXOSEEK Seeker Simulation (R. Stone -- BDM)

Parallel Simulation Techniques

Carriers, Threads, and Event Multi-Tasking Capabilities (W. Tan - Georgia
Tech)

Extraction of lower-level parallelism in EXOSIM (C. 0. Alford/P. Bingham --
Georgia Tech)

Parallel Simulation Applications

Vehicle simulation requirements for scene generation (K. Smith -- Sentar)

Implementation status of EXOSIM on the PFP (T. Collins -- Georgia Tech)

Signal-processing Algorithms (H. Gatzke -- TBE)

1.2. Schedules and milestones

As of August 1991, there are four 32-processor PFP systems available. Two of these are
available for classified operation. One of these two secure machines, hosted by the Intel RMX-
based host, is populated with mostly 80386-based processors, but also has one FPP available and
several 286-based processors to fill up the slots. The other secure system is populated with up to
six FPX processors, up to four 80386-based processors, and up to 23 FPP processors. The other
two systems are the 286-based machine located at KDEC and the FPP-based machine for internal
development of FPP/Sun host software. Not included is a prototype Multibus II PFP.

The unsecured PFPs (at DETL and KDEC) both include the basic packaging and power supplies
to support expansion to 64-processor capability. The 386-based PFP may eventually be paired
with the Multibus II PFP to produce a 64-processor hybrid system.

The major milestones completed over the period of this report are as follows:

U
6 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I

- Integration of additional 386/12 processors into PFP, making some available for the i
mostly-FPP/FPX PP (to handle memory-intensive applications),

- Development of utility software on the RMX host, i
- Development of new system software, such as loaders,

- Upgrades to the Floating-Point Processor (FPP) Compiler,

- Development of parallel-processing support utilities, including one that analyzes
program structure, one that assists in automated timing charts, and one which checks and
generates communication code, 3
- Enhancement of libraries of communication procedures for processor-processor and
processor-host interaction, providing uniform interfaces across several languages (C, Fortran,
Pascal, and PL/M),

- Improved layout of a new "piggyback" board to provide crossbar communcation
capability to the 386/12 boards through their iSBX interfaces,

- Presentation of offsite education in PFP programming, 3
- Extensive development of various versions of EXOSIM 1.0 and 2.0, and

- Demonstration of the 256-processor Seeker Scene Emulator generating frames in real 3
time and in closed-loop with EXOSIM 2.0.

The most significant causes for delays during the past year have been 3
- Inadequate compilers for the FPP and FPX boards,

- Insufficient memory on the FPP and FPX boards, and

- Lack of programming support personnel. 3
During the coming year, the highest priority will be placed on the optimal use of DETL
technologies in simulation applications such as EXOSIM. The schedule for this effort is shown 5
in Figure 1.2. The implementation dates for midcourse and end-to-end EXOSIM are generally
consistent with earlier estimates. Dates for LEAP and GBI implementation are estimates and
assume that these simulations are available to be ported to the PFP.

I
3

I

0

C0

C4

-m

N0

I
8 Annual Report: Digital Emulation Fechnology Laboratory Volume 1, Part 1

The remainder of this report wil! describe the hardware and software associated with the Digital I
Emulation Technology Laboratory, with an emphasis on the work completed during the previous
contract year. The hardware information includes updated status of the PFP units, new
processors, host enhancements, and communication interfaces. A brief description is also given
for the physical facility itself and some auxiliary computers contained within. The software
information includes new versions of utilities which support the GT-FPP (Floating-Point 3
Processor) and the GT-XSD and GT-SEQ (crossbar and sequencer boards), as well as updates to
application software (EXOSIM and LEAP).

Based on comments and suggestions from outside users and members of the blue-ribbon panel
mentioned above, DETL feels a need to address requirements for dynamic, on-demz:j
communication between processors, a feature not supported on the current PFP. While this 3
limitation can be worked around in the typical PFP applications of the past, including EXOSIM
and several foreseeable interceptor simulations, it will become more serious in applications such
as battle-management. Although Georgia Tech's concepts for an advanced PFP (the APFP),
address these limitations, it is also desirable to enhance existing systems, including tie t-tP at
KDEC. Consequently, we have a conceptual design for a new crossbar which will eliminate the

need for a sequencer, along with all of its limitations.

Although we have already developed CA complete set of software tools that meet our own research
requirements, there is a need for general programming aids, particularly for users not accustomed
to specialized computers. This also became clear based upon interaction with KDEC users and
the blue-ribbon panel. Several of the tools which DETL has used internaly will be developed
further and released to outside users.

I
I

I

I

I
I

2. Hardware and Facilities 9

2. Hardware and Facilities

This section begins with a description of the Parallel Function Processor, including recent
changes, and then discusses the current configuration of the two alternative host computers.
Most of the detail, though, is devoted to recent improvements and current board status.

2.1. Parallel Furction Processor (PFP)

The Special-Purpose Operational Computing Kernel, or SPOCK, evolved from a Ph.D.
dissertation (by James 0. Hamblen) on a new architecture designed to solve ballistic missile
simulations. Before digital computers came into prominence, some of these simulations had
been performed quite effectively on analog computers, in which basic circuit elements are
interconnected by a patch panel to create an approximation to the real system.

Digit al computers provided the potential of much higher accuracy in the simulations, but at the
cost of speed: most real systems could not be simulated nearly as fast as they really run,
generally referred to as rea time. In 1978, Georgia Tech's SPOCK I addressed the problem by
showing how up to 6 processors could effectively perform such a simulation.

Building on the previous experience, in 1982 a prototype of a 32-processor system, SPOCK 11,
demonstrated greater capability with more-powerful processors. In addition to the digital
processors, SPOCK II also had analog input and output channels. This provided the important
capability of interfacing seamlessly with the external environment, for real-time control of analog
systems.

Since that time we have developed SPOCK II into the Parallel Function Processor (PFP), a fully-
operational testbed for simulation and emulation problems from both military and nonmilitary
applications. The architecture never stagnates -- the original Intel 8086/8087 processors were
each roughly as powerful as an IBM PC, but now they can be replaced with any of four newer
processors. One is based on the Intel 80286/80287 and performs as well as an IBM AT. Another
is based on the Intel 80386/80387, and the last two are based on the AMD 29325 and 29327
processors and are about 25-100 times faster for the floating-point calculations which it is
designed to perform. Integration of 80486-based processors is planned for the coming year,
which should provide near-FPP/FPX speed, with significantly more memory and extensive
software support.

All of me processors, or Parallel Processing Elements (PPEs), support the 16-by-16 crossbar
interconnection, allowing each to communicate directly with the others. Multiple conversations
may take place simultaneously on the crossbar, and it is also possible for a single processor to
broadcast data to every other rocessor in a single instruction cycle. Since the crossbar has been
reduced in size from a full 19-inch rack down to a cluster of eight circuit boards, it is now
possible to have the power of 32 minicomputers in two racks, and still have all of the processors
work together efficiently.

I
10 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

Each of the current processors has two interfaces: one to the crossbar for data communication I
while running, and one to a shared bus that is used for loading programs and data from a central
host. Virtually any imaginable processor can be fitted to a processor slot in the PIP. In fact, if
an image-processing problem was part of a larger simulation problem, it could be assigned to an
array processor within the PFP system. Co-processing boards have been developed at Georgia
Tech that evaluate complex floating-point functions in a fraction of the time used by the best
supercomputers on the market today. These co-processing boards "piggy-back" on the
processors described earlier.

Similarly, a complete minicomputer system with an attached 3-D graphics workstation has been i
connected to one of the PFP processors, thus effectively becoming a part of the multiprocessor
system. This allows sophisticated graphics to be generated in real time as the simulations 3
proceed.

These enhancements demonstrate that other architectures can be applied as needed within the
enveloping PFP architecture. But there is also a way to increase the PFP's capability at a higher
level. Since the number of processing nodes in a crossbar is practically limited because of the
large number of switches required, the PFP needs a way to grow beyond its crossbar. A fully-
operational interconnection board has been developed which occupies a processor node in a
single PFP system. When a processor communicates with this interconnection board, the data is
passed out over an external channel to an identical board in another complete PFP. By adding I
more interconnections, multiple PFPs may form a higher level of parallel processing. A triangle
of three PFPs still allows each processor to communicate with any other processor with no
intervening processors, although there may be some waiting for an available channel.

The standard configuration of the PFP at this time is a 64-processor system (2 crossbars),
packaged in a three-rack system, including the host. A single-crossbar system can be packaged
in two smaller racks, if desired. Both the Intel RMX-based 310 host and the Sun Unix-based
386i host are currently supported. 3
2.1.1. Physical Description

The full 64-node PFP, complete with the host computer, occupies three 19 inch wide by 32 inch I
deep by 75 inch high equipment racks. Each outer rack contains 32 PPE slots. The center rack
contains the two crossbars, two sequencers, the host computer and two crossbar status displays.

All processors, as well as the sequencmi, conform to Intel's Multibus I specification. They are
connected to the host throug- " custom Multibus repeater system, which is used by the host to
communicate with each PPE. Each 16 by 16 crossbar sitch is made from four 8 by 8 switch
boards connected through a custom backplane. Each 8 by 8 switch board is built to a 15.75 inch
by 14.44 inch Eurocard standard. Both crossbars are housed in one 19 inch wide card cage. 3
Each of the 64 nodes in the system is occupied by a PPE. A PPE can be one of five different
boards; an array interconnect, an Intel 80286-based commercially available processor, an Intel 3
80386-based commercially available processor, a Georgia Tech Floating-Point Processor, or a

I
I

2. Hardware and Faci]ities 11

multi-channel analog I/O interface. Other boards will be developed as necessary to enhance the
capability of the PFP.

The Georgia Tech Floating Point Processor (GT-FPP/3) is an 8 MFLOP computing engine based
on the AMD 29325 floating point chip. Currently, the board is programmed using a subset of
Pascal or in C. Ada and FORTRAN are supported by Ada-to-C and FORTRAN-to-C converter
programs. An enhanced version, the GT-FPX board, is based on the AMD 29327 and supports
double precision arithmetic along with a wider range of integer and control operations.

The iSBC286/12 processor is commercially built by the Intel corporation. It is a cheaper, lower
performance board than the GT-FPP/3. The board is useful in applications that require large
amounts of memory such as table look ups. Presently, most of the programming is done in
FORTRAN and C , although Pascal, PL/M, and other Intel standard utilities are available. The
crossbar interface to this board is built to fit the Intel standard iSBX port. Supporting other
Multibus I processors that have this port only requires changes in the board's firmware. The
iSBC386/12 processor. is an 80386-based equivalent of the iSBC286/12 board, with
approximately a 3-4 times speed improvement for typical PFP applications. Several iSBC
486/12 boards are on order. These are 80486-based replacements for the 80286 and 80386-based
boards, and should be roughly as fast as the FPP/FPX processor boards, while supporting more
onboard memory and more compilers.

The analog input/outpui board consists of four analog to digital input channels and four digital to
analog output channels. The output portion consists of 4 separate digital to analog converters.
The input portion consists of 4 sample and hold circuits multiplexed through one analog to
digital converter. Any combination of inputs and outputs are available for use. All digital
conversions have 12 significant bits.

The array interconnect board (GT-ARI/1) is used as a direct interconnect between crossbars. Each
array interconnect may send and receive 16 bit words simultaneously from other array
interconnects. The use of array interconnects affects only the crossbar code and is otherwise
transparent to the individual processors.

All programs are written and compiled on the host computer then downloaded to the processors.
Currently, each problem is analyzed by a programmer and split into parts which are then
compiled for individual processors. A separate compiler is used to load the crossbar and
sequencer with the instructions for processor communication.

The major components of a full system are:

1. The host machine. (This ma,' be an Intel 310 or Sun 386i)

2. An MDB Systems Data Shuttle 2000 removable disk drive unit.

3. Up to 64 processors and array interconnects, in any combination.

4. Up to two sequencers.

I
12 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

5. Up to two full 16 by 16 GT-XB/2 crossbar switches. I

6. Up to two GT-XSD/2 status display units.

7. Up to two equipment racks containing Multibus I card cages, sequencer cabling, and power

distribution.

8. One equipment rack containing the crossbar, sequencers, crossbar status displays, and
appropriate power distribution.

2.1.2. Intel 310 Host

The Intel 310 host is based on a 12 Mhz 80286 processor (actually the same 286/12 board I
available for use in the PFP) and runs the Intel iRMX operating system. We have also replaced
the host 286/12 board with a 386/12 board, in much the same way that we have replaced the PFP

286/12 processors with 386/12 processors. This configuration can execute computationally-
Lntensive applications (including compilation and linking) about four times faster that the 286-
based host. The host is tied to the PFP through a custom set of repeater boards developed here at

Georgia Tech. A master repeater board is located within the host chassis, and slave repeater
boards are located within the racks of processors. The machine supports all standard Intel
languages running under the iRMX operating system, including C, Pascal, PLM, and
FORTRAN. Programs written in any of these languages may be compiled and linked on the host
and then downloaded to processor boards (iSBC 286/12s or iSBC 386/12s) in the PFP for
execution. In addition, the host supports a compiler that implements a subset of Pascal for use
with the GT-FPP/3 custom floating-point processor.

2.1.3. Sun 386i Host 3
The Sun 386i host is based on a 25 Mhz 80386 processor and runs the Unix operating system. It

is the basis of an eventual replacement for the Intel 310, leading to higher performance and a I
more user-friendly environment. The hardware interface to the PFP is similar to that of the Intel
310 host, except that the master repeater board is located within a dedicated Multibus rack,

connected to the Sun host by a PC-to-Multibus link. (The Sun 386i utilizes the PC/AT bus.) A U
C compiler has been written to support the GT-FPP/3 processor, and other languages \N i)-
supported via translators (Ada-to-C and FORTRAN-to-C). All low-level drivers interfacin6 te

Sun to the PFP are complete and several Fortran, Ada, and C programs have been loaded and I
tested, including versions of EXOSIM The Sun also supports standard Intel-supplied languages
for programming the iSBC 386/12 processors. 3
2.2. Seeker Scene Emulator (SSE)

In addition to developing crossbar machines like the PFP, DETL is actively studying other I
architectures, since there is no such thing as a completely general-purpose parallel computer.
One of the most promising is a group of architectures built around a new microprocessor chip,

the Inmos Transputer. Unlike previous microprocessors, the Transputer was specifically
designed to be interconnected with others of its kind. Since a single chip includes the processor, 3

I

2. Hardware and Facilities 13

memory, and communication ports, it is possible to build a parallel machine with little more than
a group of Transputers.

Each Transputer has four links that can be used to tie them together, allowing a wide range of

architectures to be built. One of our principal applications for the Transputer is a Seeker Scene
Emulator, a machine that models what an imaging sensor on a missile would see during a
mission. Most simulations of such systems tend to simplify the infrared sensing process in order
to minimize computations, but the Georgia Tech Seeker Scene Emulator will provide a signal

which can be displayed on a screen and will look virtually identical to a real view of an incoming

threat.

This seeker output can then be used by a simulation running on the PFP, or by an actual guidance
and control processor, like the one being developed for our VLSI devices. The Seeker Scene
Emulator will use 256 Transputers, so when connected to PFP in a simulation, it will be another

example of a specialized parallel processor within the more general crossbar architecture of PFP.

Under direction from the U. S. Army Strategic Defense Command, the Computer Engineering
and Research Laboratory at the Georgia Institute of Technology and BDM Corporation are

developing a real-time Focal Plane Array Seeker Scene Emulator. This unit will enhance

Georgia Tech's capabilities in KEW system testing and performance demonstration.

The FPA Seeker Scene Emulator combines advanced hardware developed at Georgia Tech with a

BDM-generated database to produce signals based upon target radiometric information, seeker
optical characterization, FPA detector characterization, and simulated background environments.

Using real-time, positional updates, typically from the Georgia Tech Parallel Function Processor,
the Seeker Scene Emulator can combine elements of the pre-computed database to form an image
that is positionally and radiometrically correct.

In conjunction with development of the FPA Seeker Scene Emulator, research into signal

processing of seeker data is underway. The Seeker Scene Emulator provides a platform for the

expedient testing of algorithms and implementations. Currently, a parallel-processing network is

being used to test various signal processing "building blocks."

Detailed information about the Seeker Scene Emulator may be found in Volume 2 of this annual

report.

2.3. Other computer systems

Originally, a Digital Equipment Corporation MicroVAX II was used as the primary file server
for the Seeker Scene Emulator, but this function has now been transferred to the Sun 386i which
also serves as one of the PFP host machines. The MicroVAX can still be used to transfer
programs and data to and from other contractors. Programs written for VAXes and other off-site
computers may be loaded onto this MicroVAX via its nine-track tape drive. From there, files
may be transferred to the PFP hosts (Intel 310s or Sun 386i's) or to other computer systems.
Also, additional simulation support is available on this system through the MatrixX and ACSL
languages. Both languages provide an environment for the simulation of discrete and

I
14 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

continuous-time systems, including a choice of integration methods. MatrixX also has a
graphical user interface for entering simulation specifics. This MicroVAX is approved for
classified data processing. This system is equipped with a nine-track tape system, the standard
TK50 tape unit, an Ethernet network interface, and a Caplin Cybernetics Corporation QT0
Transputer Interface Module.

Another MicroVAX is dedicated to a Chromatics 3-D graphics workstation. This combination of i
machines may be directly connected to a PFP processor in order to display complex three-
dimensional graphics during simulations. Both of these machines are approved for classified
data processing. In order to improve graphics quality and to support standard computing
platforms, a Silicon Graphics Indigo workstation is currently in the purchasing plans. This
machine would replace the Chromatics system for high-quality graphics output, while also 5
supporting the graphics requirements of the SSE.

A secure Ultrix machine was required to run the PFP programming tools that have been 5
developed under Ultrix. Consequently, the Chromatics MicroVAX can now be brought up as a
secure Ultrix machine. Ultnx V4.0 has been installed onto removable disk canisters ready for
use whenever we can get secure code and data to the machine This machine has also been
useful to shake out the portability problems of the code, using both the UNIX FORTRAN
compiler and the VMS FORTRAN compiler. 3
It was also necessary to build a secure PC disk for the an IBM-compatible PC, using a 20MB
Bernoulli disk. The system has been used to transfer secure data via the network from the

iRMXII host or VAX VMS host (via OpenNET) to the PC or the Ultrix machine (via TCP/IP).

2.4. Secure laboratory

The principal elements of the Digital Emulation Technology Laboratory are housed in a
laboratory on the third floor of the Centennial Research Building which has been approved for

classified operation up to the secret level. Within this facility are most of the machines which I
have been described, including:

- the 80386/80286-based PFP (32-processor), with FPP capability, i
- the FPP/FPX/80386-based PFP (32-processor), 3
- two RMX-based PFP host machines (Intel 310s),

- one Unix-based PFP host machine (Sun 386i), 3
- the Seeker Scene Emulator, 3
- the MicroVAX with 9-track and TK50 tape drives,

- the MicroVAX/Chromatics system, and 3
- an IBM-compatitble PC serving as the SSE host.

I

2. Hardware and Facilities 15

Each of these machines is approved for classified processing. The two PFP host machines are
functionally identical, with one always available as a backup. A safe is also provided for storage
of classified documents and magnetic media. All classified hard disks are removable, and the
classified operating disks are stored in the safe.

I
16 Annual Report: Digital Emulation Technology Laboratory Volume 1 Part I

3. FPP/FPX Development Tools

3.1. Introduction I
This section covers the latest changes and additions which have been made to the FPP/FPX
processor development tools.

I
3.2. FPP/FPX object module loader

As part of our effect to improve the software support for the FPP/FPX processors, the old 3
FPP/FPX object module loader has been replaced by a new object module loader. Refer to
Appendix B for the complete program source. 3
The old object module loader took as input a list of relocatable FPP or FPX object modules and
constructed a corresponding absolute FPP or FPX load module. Each object module was
assumed to be required and so was relocated to an absolute address according to the order in
which they appeared on the input list. It was limited to 50 object modules maximum. I
FPP example:

vicld \
/vol/pfp/lib/fpp id.fppo \
../library I/subr, t~ne l.fppo \
.. /library 1/ ...
../library-i/sub~outine n.fppo \

./I ibrary n/subroutinel.fppo \
•.. library-n/ . .

../Iibrary -n/subroutine n.fopo \
/vol/pfp/Lib/ppta;. fppo

FPX example:
vicid \
/vol/pfp/iib/fpphead.fpxo
../library :/subroutine_l.fpxo \
• ./library-'/ ... -

S./library _/subrcutine-n.[pxo \

../library nisubroutine l.fpxo

.. /library n/ .. .
.,'library r/subroutiPie r..fp3xc

Ivollpfp/iib/fpptaii.fpxo _

Figure 3.1: Example use of old object module loader.

I
The new object module loader take as input a list of relocatable FPP or FPX object modules and
constructs a corresponding absolute FPP or FPX load module. But, the new object module 3
loader will only assume that the first object module is required an that the remaining object
modules should only be included to satisfy a code or data dependency requirement. The required
object modules will then be relocated to an absolute address according to the order in which they 3
appear on the input list. It is currently limited to 1024 object modules maximum.

I

I
1 3. FPP/FPX Development Tools 17

FPP example:
vicId\
/vol/pfp/lib/fpphead. fppo
../libraryl/. fppo \

../library n/*.fppo \
/vol/pfp/lib/fpptail. fppo

FPX example:
vicld\
/vol/pfp/lib/fpphead.fpxo \
../libraryl/*.fpxo \I ./library n/'.fpxo \
/vol/pfp/lib/fpptail. fpxo

I Figure 3.2: Example use of new object module loader.

The new object module loader is also faster than the old object module loader because it reads
each object module once where the old loader read each object module three times.

I
3.3. FPP/FPX program downloader

The PFP FPP/FPX downloader program takes the output of the FPP/FPX object module loader

program and downloads the code and data into a target FPP or FPX processor. Refer to
Appendix C for the complete program source.

The command line syntax is:

loadfpp <processor l>=<file 1> [... <processorn>=<filen>]

where:
<processori> = target processor name

<filei> = host file name

The FPP/FPX program downloader performs the following steps:
1. Build a bootstrap program for downloading the application program data.
2. Download the bootstrap program.
3. Start the bootstrap program.
4. Send the application program data to the bootstrap program.
5. Stop the bootstrap program.
6. Download the application program code.
7. Start the application program.

I
18 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1 I
4. Software Development Tools

4.1. Introduction I
The following software development tools consist of a collection of programs developed at the
Georgia Institute of Technology. These tools, which execute under either SUN OS or Ultrix,
were made to assist the PFP user in the design, development and analysis of programs for the

PFP. 3

4.2. Sequential programming tools 3
This section will discuss programs designed to assist the PFP user in the design, development

and analysis of sequential programs.I

4.2.1. INITIAL program

The purpose of the INITIAL program is to determine if any uninitialized variables exist in a 3
FORTRAN 77 program. Refer to Appendix I for the complete program source.

The command line syntax is: 3
initial <input file> <output fMle> [-conditional=y or n] 3

where:
<input file> = input file name
<output file> = output file name

The INITIAL program with the option "-conditional=y" determines whether a variable is I
uninitialized by assuming the following about the program control flow:

1. that execution proceeds sequentially through a subprogram from top to bottom. I
2. when a subprogram call is encountered, control is passed to that subprogram with the

resulting changes in the formal arguments reflected back through the callers actual arguments.

3. that data and parameter statement assignments always occur. 3
4. that variable references and assigrrents outside conditionals always occur.

5. that variable assignments inside conditiona!s always occur. I
I
I

4. Software Development Tools 19

6. that variable references inside conditionals always occur.

The INITIAL program with the option "-conditional=n" determines whether a variable is

uninitialized by assuming the following about the program control flow:

1. that execution proceeds sequentially through the program from top to bottom.

2. when a subprogram call is encountered, control is passed to that subprogram with the

resulting changes in the formal arguments reflected back through the callers actual arguments.

3. that data and parameter statement assignments always occur.

4. that variable references and assignments outside conditionals aways occur.

5. that variable assignments inside conditionals never occur.

6. that variable references inside conditionals always occur.

From these two choices, the option "-conditional=n" implements the most conservative approach

in determining whether a variable is uninitialized.

R- or {RI Reference without set

S- or fSI Set without reference

CR- or f CR} Conditional Reference without set

CS- or fCS Conditional Set without reference

RS or [RS) Reference and then Set

SR or fSR} Set and then Reference

CRS or [CRS) Conditional Reference and then Set

CSR or fCSRI Conditional Set and then Reference
Figure 4.1: INITIAL codes.

The following figures will be used to demonstrate the INITIAL program.

U
20 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1 U
default: example.l example.2

example.l: example. f I
initial example.f example.l -canditional=y

example.2: example.f
initial example.f example.2 -conditional=n

Figure 4.2: INITIAL example makefile.

I
PROGRAM example
DATA a /100./
CALL subl(a, b, c, d, e)
f =a + b + c + d + e + g
CALL square(f)
END

SUBROUTINE subl(a, b, c, a, e)
IF (a .LE. 10.) THEN
b = 0.

ELSE
b b

END TF
0.

CALL sub2(a, d, e)
END

SUBROUTINE sub2 (a, d, e)
IF (a .LE. 5.) THEN
CALL square(d)

END IF
CALL sub3(a, e)
END

SUBROUTINE sub3(a, e)
IF (a .LE. 1) e = 0.
END

SUBROUTINE square(z) 3
z = z**2
END

Figure 4.3: INITIAL example input (EXAMPLE.F). 3
The following figure contains output produced by the INITIAL program for example 1. The
variables "D" and "G" in subprogram "EXAMPLE" have been spotted by INITIAL as potential
uninitialized variables. The variable "D" has the code "RS" which means that it's being
referenced before it's being set. The variable "G" has the code "R-" which means that it's being

referenced without ever being set. The other lines in the output show each successive
subprogram with its formal arguments and local variables, if any. I

I
I
I
I

4. Software Development Tools 21

EXAMPLE
D RS
G R-

SUBI A(R}=I,B(SR}=2,C(S}=3, D{RS}=4,E(S =5

SUB2 A{R}=1, D(RS)=2,E{S}=3

SUB3 A(R)=I,E{S}=2

SQLAP- ?{' 1

Figure 4.4: INITIAL example 1. output (EXAMPLE.1).

The following figure contains output produced by the INITIAL program for example 2. The
variables "B", "D" and "G" in subprogram "EXAMPLE" have been spotted by INITIAL as
potential uninitialized variables. The variables "B" and "D" have the code "CRS" which means
that they are being conditionally referenced before being set. The variable "G" has the code "R-"
which means that it's being referenced without ever being set. The other lines in the output show
each successive subprogram with its formal arguments and local variables, if any.

EXAMPLE
B CRS
D CRS
G R-

SUB1 A{R}=I,B{CRS}=2,C{S}=3, D{CRS}=4, E{S=5

SUB2 A(R}=1, D{CRS}=2,E(S}=3

SUB3 A{R)=1,E{S)=2

SQUARE Z(RS)-1

Figure 4.5: INITIAL example 2. output (EXAMPLE.2).

Limitations of the INITIAL program:

1. Equivalenced variables are not supported.

2. Common block variables are not supported.

3. If goto statements are used in such a way to violate the above assumptions, then the
results that the INITIAL program produces may not be correct.

4.2.2. DECLARE program

The DECLARE program takes as input a FORTRAN 77 program and produces as output a
complete set of FORTRAN 77 declaration and data statements. Refer to Appendix F for the
complete program source.

I
22 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

The command line syntax is:I

declare <input file> <output file> [-initialize=n or y]

where:
<input file> = input file name
<output file> = output file name

The DECLARE program with the option "-initialize=n" will parse the input FORTRAN 77 and

produce the following output for each subprogram:

1. a subprogram skeleton.

2. then the formal argument declaration statements, if any. 3
3. then the common block declaration statements, if any.

4. then the variable declaration statements, if any. I
I

The DECLARE program with the option "-initialize=y" will parse the input FORTRAN 77 and

produce the following output for each subprogram: 3
1. a subprogram skeleton.

2. then the formal argument declaration statements, if any. I
3. the common block declaration statements, if any. 3
4. then the variable declaration statements, if any.

5. then the data statements for initialized variables, if any. U
6. then the data statements for uninitialized variables, if any. 3

Also, scalar variables or arrays that are declared in a subprogram but not used referenced or set I
will be excluded from the output FORTRAN 77 declaration and data statements.

The following figures will be used to demonstrate the DECLARE program. I
I
I
U

4. Software Development Tools 23

default: example.1 example.2

example.l: example.f
declare examplef example.1 -initialize=n

example.2: example. f
declare example.f example.2 -initialize=y

Figure 4.6: DECLARE example makefile.

PROGRAM example
IMPLICIT INTEGER(a-z)
DIMENSION a(10), b(10), c(10)

CALL subl (c)
CALL sub2 (c)
END

SUBROUTINE subl (c)
IMPLICIT INTEGER(a-z)
DIMENSION c(10)
REAL i, j(10), k
COMMON /block/ i(10), j, k(10)
DATA aa /i/

DO 10 a = aa, 10
c(a) = c(a) + i(a) + j(a) + k(a)

10 CONTINUE
END

SUBROUTINE sub2 (c)
IMPLICIT INTEGER(a-z)
DIMENSION c(10)
REAL i(10), j, k(10)
COMMON /block/ i, j(10), k
DATA bb /l/

DO 10 b = bb, 10
i(b) = k(b) - c(b)
J(b) = j(b) - c(b)
k(b) = i(b) - c(b)

10 CCNTINUE
END

Figure 4.7: DECLARE example input (EXAMPLE.F).

From the following output, you can see that DECLARE program recognized that the variables
"A" (in "EXAMPLE") and "B" (in "EXAMPLE") were not necessary and so were excluded from
the output. Also, note that implicit variable declarations were changed to explicit variable
declarations.

U
24 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

PROGRAM EXAMPLE
VARIABLE DECLARATION

INTEGER'4 C(10)
END

SUBROUTINE SUB1()

" FORMAL ARGUMENT DECLARATION
INTEGER*4 C(10)

* COMMON /BLOCK/ DECLARATION

COMMON /BLOCK/ I,J,K
REAL*4 I(10)
REAL*4 J(10)
REA,* 4 Ki0,l)

* VARIABLE DECLARATION

INTEGER*4 AA
INTEGER*4 A
END

SUBROUTINE SUB2()
* FORMAL ARGUMENT DECLARATION

INTEGER*4 C(10) I
* COMMON /BLOCK/ DECLARATION

COMMON /BLOCK/ I,J,K
REAL*4 I(10)
REAL*4 J(10)
REAL*4 K(10)

* VARIABLE DECLARATION
INTEGER*4 BB
INTEGER*4 B
END Figure 4.8: DECLARE example 1. output (EXAMPLE.1).

I
From the following output, you can see that the DECLARE program recognized that the
variables "A" (in "EXAMPLE"), "B" (in "SUB1") and "C" (in "SUB2") did not have an initial

value. Therefore, each variable was given an initial value of zero. Also, the subprogram
"BLKDAT" was automatically included to initialize all elements within the common "BLOCK". I

I
I
I
I
I
I
I
I

4. Software Development Tools 25

PROGRAM EXAMPLE
VARIABLE DECLARATION

INTEGER*4 C(10)
- UNINITIALIZED DATA

DATA C /10 * 0/
END

SUBROUTINE SUB1()
- EORMAL ARCU2ME-'T DECIAPATION

INTEGER*4 C(10)
* COMMON /BLOCK/ DECLARATION

COMMON /BLOCK/ IJ,K
REAL*4 I(10)
REAL*4 J(10)
REAL*4 K(10)

VARTARLE DECLARATION
INTEGER'4 AA
INTEGER*4 A

INITIALIZED DATA
DATA AA /I/

* UNINITIALIZED DATA
DATA A /0/
END

SUBROUTINE SUB2()
FORMAL ARGUMENT DECLARATION

INTEGER*4 C(10)
COMMON /BLOCK/ DECLARATION

COMMON /BLOCK/ IJ,K
REAL*4 I(10)
REAL*4 J(10)
REAL*4 K(10)

* VARIABLE DECLARATION
INTEGER*4 BB
INTEGER*4 B

INITIALIZED DATA
DATA BB /I/

UNINITIALIZED DATA
DATA B /0/
END

BLOCK DATA BLKDAT
* COMMON /BLOCK/ DECLARATION

COMMON /BLOCK/ I,J,K
REAL*4 I(10)
REAL*4 J(10)
REAL*4 K(10)

COMMON /BLOCK/ INITIALIZATION
DATA I /10 * DED/
DATA J /10 * 0E0/
DATA K /10 * 0E0/
END

Figure 4.9: DECLARE example 2. output (EXAMPLE.2).

Limitations of the DECLARE program:

1. Equivalenced variables are not supported.

2. Parameters are not supported in array declarations.

4.2.3. STRUCTURE program

The STRUCTURE program analyzes a FORTRAN 77 program in order to generate a
FORTRAN 77 subprogram call structure. Refer to Appendix L for the complete program source.

U
26 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I

The command line syntax is: I
structure <input file> <output file>

where:
<input file> = input file name
<output file> = output file name

The following figures will be used to demonstrate the STRUCTURE program. i

defi lt: example.out I
example. out: example. f

structure example.f example.out

Figure 4.10: STRUCTURE example makefile.

I
PROGRAM example
DATA dt /l./
t = O.
x =0.y 0.
z 0.i

10 CONTINUE
CALL send(x, y, z)
altitude = sqrt(x"*2 + y*-2 + z-2)
CALL receive(dx, dy, dz)
CALL integrate(x, dx, di) I
CALL integrate(y, dy, dr)
CALL integrate(z, dz, di)
t = t + dt
GO TO 10
END I
SUBROUTINE send(x, y, z)
CALL send real 32bit(x)
CALL send-real-32bit (y)
CALL send-real-32bit (z)
END

SUBROUTINE receive(dx, dy, dz)
CALL receivereal 32bit (dx)
CALL receivereal 32bit (dy)
CALL receivereal_32bit (dz)
END

SUBROUTINE integrate(x, dx, dr)
x = x + dx*dt
END

Figure 4.11: STRUCTURE example input (EXAMPLE.F). l
The following figure contains output produced by the STRUCTURE program. As you can see,
the STRUCTURE program determined that the subprogram "example" called subprograms
"send", "sqrt", "receive" and "integrate". When the subprogram "send" was called, it called I

I

4. Software Development Tools 27

subprogram "sendreal_32bit" three times. When the subprogram "receive" was called, it called
subprogram "receivereal_32bit" three times.

example
send

send real 32bit
send-real-32bit
send-real-32bit

sqrt
receive

receive real 32bit
receive -real -32bit
receive-real -32bit

integrate

integrate

Figure 4.12: STRUCTURE example output (EXAMPLE.OUT).

There are no limitations on the STRUCTURE program.

4.2.4. CTIMER program

The CTIMER program analyzes a FORTRAN 77 program in order to produce a serial program
time profile from timing subprogram calls. Refer to Appendix E for the complete program
source.

The command line syntax is:

ctimer <input file> <output file>

where:
<input file> = input file name
<output file> = output file name

The CTIMER program takes as input a FORTRAN 77 program and produces as output a
modified FORTRAN 77 program with timer code automatically inserted around subprogram
calls. This modified program is then compiled, bound, and executed on the PFP to produce an
output file which details the number of times and length of time spent in each subprogram call.

The following figures will be used to demonstrate the CTIMER program.

U
28 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I

default: example.f ctimer.txt i
examplef: examplef.old

ctimer example.f.old example.f >ctimer.txt

Figure 4.13: CTIMER example makefile.

U
PROGRAM example
DATA dt /l./
t =0.
x= 0.
y= 0.
z 0.I

LOOP PROLOGUE

10 CONTINUE*LOOP* START I
CALL send(x, y, z)

altitude = sqrt(x"*2 + y'*2 + z*-2)
CALL receive(dx, dy, dz)
CALL integrate(x, dx, dt)
CALL integrate(y, dy, dt) I
CALL integrate(z, dz, dt)
t = t + dt

LOOP STOP

IF (t .LE. 1000.) GO TO 10

LOOP EPILOGUE
END

SUBROUTINE send(x, y, z)
CALL send real 32bit (x)
CALL send-real-32bit (y)CALL send-real-32bit (z)

END

SUBROUTINE receive(dx, dy, dz) I
CALL receive real 32bit(dx)
CALL receive-real-32bit (dy)
CALL receive real 32bit(dz)
END 5
SUBROUTINE integrate(x, dx, dt)
x = x + dxdt
END

Figure 4.14: CTIMER example input (EXAMPLE.F.OLD). 3

The following figure contains the FORTRAN 77 program created by the CTIMER program. The I
required "*LOOP* PROLOGUE" and "*LOOP* EPILOGUE" comments have been replaced by
calls to timer routines and the optional "*LOOP* START" and "*LOOP* STOP" comments 3
have been removed. Note that the "CALL startjtimero" and "CALL stop-timero" now appear
around each subprogram call.

I
I
I

4. Software Development Tools 29

FRCGRAM example
DATA dt /I.!
t 0.
x 0.
y 0.
z 0.

CALL timer prologue))

10 CONTTNUE

CALL start timer(!)
CALL send~x, y, z)
CALL stop timer(l)
altitude = sqrt~x--2 + y--. +Z-2)
CALL start timer(2)
CALL receive(dx, dy, dz)
CALL stop timer (2)
CALL start timer(3)
CALL integrate(x, dx, dt)
CALL stop tirner(3)
CALL start-tjmer(4)
CALL integrate(y, dy, dt)
CALL stop timer (4)
CALL start timer(5)
CALL integrate~z, dz, dt)
CALL stop timer(5)
t -t +dt

IF (t .LE. 1000.) THEN
GO TO 10

END IF

CALL timer epilogue))
END

SUBROUTINE send~x, y, z)
CALL start timer)6)
CALL send_ real _32bitix)
CALL stop timrer)6)
CALL start timer)

7
)

CALL send-real _32oit)y)
CALL stop timner)7)
CALL start timer(B)
CALL send real _32bit(z)
CALL stop timer18)
END

SUBROUTINE receive~dx, dy, dz)
CALL start-timer)9)
CALL receive real 32bit(dx)
CALL stoptirer)9T
CALL st a rrt tner f10)
CALL receive-real_32bit~dy)
CALL stopt tirer(1)1
CALL start timer(ll)
CTALL receive real 32bit(dz)
CALL stop-tiner)17i)
END

SUBROUTINE inteqrate (x, dx, dt)
x = x +dxdt,
END

Figure 4.15: CTIMER exampIL output (EXAMPLE.F).

The following figure contains the timer list also created by tht,. CTIMER program. The list
contains three fields:

1. the timer number.

2. the calling subprogram name.

I
30 Annual Report: Digital Emulat;on Technology Laboratory Volume 1, Part 1

3. .he called subprogram name. I

i exa.-pLe send I
2 example receive

3 example integrate
4 example integrate
5 example integrate
6 send send real 32bit I
8 send send-real-32bit
8 send send-reai-32bit
9 receive receive real 32bit
!3 receive receive real 32bit I
ireceive receive-real-32bit j

Figure 4.16: CTIMER example output (CTIMER.TXT).

I
The following figure contains the output from executing the EXAMPLE.F program on the PFP.
The output contains four fields: I

1. the timer number.

2. the comment "TIMER".

3. the number of times the subprogram was called.

4. the length of time spent inside the subprogram call.

1 TIMER <countl> <timel>
2 TIMER <count2> <time2>
3 TIMER <count3> <time3>
4 TIMER <count4> <time4>
5 TIMER <coulntS> <time5>
6 TIMER <count6> <time6>
TMER <count

7
> (time

7
>

8 TIMEP <countS> time8>
TIMER <count9> <time9>

I0 TIMER <countl0> <timei0>

1 M TMER <countll> <timel!>

Figure 4.17: CTIMER example output (CTIMER.OUT).

Limitations of the CTIMER program: I
1. Function subprograms are not timed.

2. Function statements are not timed. I
I
I
I

4 4. Software Development Tools 31

4.3. Parallel programming tools

This section will discuss programs designed to assist the PFP user in the design, development
and analysis of parallel programs for the PFP.I

I 4.3.1. NETWORK program

The NETWORK program analyzes multiple FORTRAN 77 programs in order to automatically
generate a crossbar/sequencer compiler program. Refer to Appendix K for the complete
program source.

The NETWORK program takes as input multiple FORTRAN 77 programs and produces a
crossbar/sequencer compiler program with the maximum number of overlapping transfers per
cycle as possible. The number of cycles and number of overlaps are dependant on the order of
the manually placed SENDs and RECEIVEs in the input FORTRAN 77 programs and the group
identity and ordering priority from the PRIORITY.TXT file. The NETWORK program orders
variables by looking for all variables that are ready to be sent and picking the highest ordering
priority variables first. Also, it uses the group identity to make sure that only variables within a
group are allowed to overlap. The group identity and ordering priority information are easily
obtained from the Microsoft Project timing analysis charts.

An additional task of the NETWORK program is to verify the integrity of the network
commanication:

I 1. The sending processor's variable name and type must match exactly with the receiving
processor's variable name and type.

I 2. All processor's receive FIFOs are examined to make sure that variable order matches
the sending variable order.

I 3. All SENDs and/or RECEIVEs must match, i. e., no leftovers.

I
The following figures will be used to demonstrate the NETWORK program.

I
I

32 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I

default: network.1 retwork.2

COMMUNICATION =\

blockO.communicationN

blockl.communication\I
block2.conrunication
block3.communication

PROCESSOR = \
Dl=blockl.communication\

02=block2.communicatjon
03=block3 .comxnunicac ion

network.l: priority.l $ (COMMUNICATION)
network <priority.1 $(PROCESSOR) >network.1

network.2: priority.2 $ (COMMUNICATION)I
network <priority.2 $(PROCESSOR) >network.2

.SUFFtIXES: .f .communication
.f. communication:I

communication $*.f $*.communication

Figure 4.18: NETWORK example makefile.

PROGRAM blockO
DATA a /I./
DATA t /0./

LOOP PROLOGUE

10 CONTINUE
LOOP START

CALL send-real -32bit(a)I

CALL receive-real -32bit (c)
CALL receive-real _32bii (d)
a =c +d
t =t + 1.

LOOP STOPI
IF (t .LT. 1000.) GO TO 10

LOOP EPILOGUE
END

Figure 4.19: NETWORK example input (BLOCKO.F).

4. Software Development Tools 33

PROGRAM blocki
DATA b /l./
DATA t /0./

-LOOP* PROLOGUE

10 CONTINUE
LOOP START

CALL receive real 32bit (a)
CALL send-real_2it(b)
CALL receive-real_32bit Cd)
b a+ d
t =t + 1.

LOOP STOP
IF (t .LT. 1000.) GO TO 10

LOOP EPILOGUE
END

Figure 4.20: NETWORK example input (BLOCK1.F).

PROGRAM block2
DATA c /1.!
DATA t /D./

LOOP PROLOGUE

10 CONTINUE
LOOP START

CALL receive real 32bit (a)
CALL send-realJ2bitfc)
CALL receive-real_32bit (d)
c a +d
t =t + 1.

LOOP STOP
IF (t .LT. 1000.) GO TO 10

LOOP EPILOGUE
END

Figure 4.21: NETWORK example input (BLOCK2.F).

I
34 Annmaad Report: Digital Emulation Technology Laboratory Volume 1, Part I

PROGRAM block3 I
DATA d /1./

DATA t /0./

LOOP PROLOGUE

10 CONTINUE
LOOP START

CALL receive real 32bit (a) ICALL receive-real-32bit (b)
CALL send real 32bit(d)
d =a + b-

t t + 1.

LOOP STOP I
IF (t .LT. 1000.) GO TO 10

LOOP EPILOGUE

END Figure 4.22: NETWORK example input (BLOCK3.F).

I
The following figure contains the group identity and ordering priority for example 1. The
NETWORK program will try to, if possible, order the transfers with variable "A" first, then "C",
then "B" and finally "D". Since there are not any group dividers, there is only one group.

B

Figure 4.23: NETWORK example 1. input (PRIORITY.1).

I
The following figure contains the crossbar/sequencer compiler program for example 1. Note that
the NETWORK program determined that the "C" and "B" transfers could be overlapped. Also,
the bottom four lines are included to summarize the communication requirements for each
program.

LOOP I

CYCLE C]
p01, p02, p03 := p00.2; (REAL*4 A 1000

CYCLE 2
p00 p02.2; [REAL*4 C 1001]
p03 p01.2; [REAL*4 B 1002

CYCLE [3 I
poo, pOl, p02 p03.2; [REAL*4 D 1003

p00 = block0.f, S = 1, R = 2, 3 1
p01 = blockl.f, S = 1, R = 2, 3 l
p02 = block2.f, S = 1, R = 2, 3 1
p03 block3.f, S = 1, R = 2, 3 1

Figure 4.24: NETWORK example 1. output (NETWORK.l).

I
I

4. Software Development Tools 35

The following figure contains the group identity and ordering priority for example 2. The
NETWORK program will try to, if possible, order the transfers, with variable "A" first, then "C",
then "B" and finally "D". But this time, there are two groups divided by the "#" character.
Group I contains the variables "A" first and then "C". Group 2 contains variables "B" first and

A
C

B
D

Figure 4.25: NETWORK example 2. input (PRIORITY.2).

The following figure contains the crossbar/sequencer compiler program for example 2. Note that
the NETWORK program determined that the "C" and "B" transfers could not be overlapped
since they each belong to different groups. Also, the bottom four lines are included to
summarize the communication requirements for each program.

LOOP

CYCLE 1
p01, p02, p03 := p0O.2; (REAL*4 A 1000

CYCLE [2
p00 := p02.2; [REAL'4 C 1001 1

CYCLE I 3 1
p03 := p01.2; [REAL*4 B 2000 j

CYCLE 4
p00, p01, p02 p03.2; [REAL*4 D 2001

p00 = block0.f, S = 1, R = 2, 3]
pOl = blockl.f, S = 1, R = 2, 3
p02 = block2.f, S = 1, R = 2, 3]
p03 = block3.f, S = 1, R = 2, 3 1

Figure 4.26: NETWORK example 2. output (NETWORK.2).

Limitation(s):

1. A maximum of 1000 groups with a maximum of 1000 variables per group.

2. Variables which are communicated between programs must maintain the same name
and type.

Il
36 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I

"INCORRECT
PROGRAM BLOCKO
CALL SEND REAL 32BIT(A
CALL SEND-REAL-64BIT(B
END

PROGRAM BLOCK1
CALL RECEIVE REAL 64BIT(A
CALL RECEIVEREAL_64BIT(BB
END

" CORRECT
PROGRAM BLOCKO
CALL SEND REAL 32BIT(A
CALL SENDREAL-64BIT(B
END

PROGRAM BLOCK1
CALL RECEIVE REAL 32BIT(A
CALL RECEIVEREAL_64BIT(B

! END
Figure 4.27: NETWORK limitation 2. example.

3. A SEND and/or RECEIVE cannot be duplicated within a program.

* INCORRECT
IF (A. LT. B) THEN

CALL SENDREAL_32BIT(C
ELSE

END IF CALL SEND_REAL_32BIT(
C)

" CORRECT

IF (A. LT. B) THEN

ELSE
C ..

END IF
CALL SEND REAL 32BIT(C

Figure 4.28: NETWORK limitation 3. example.

4. A SEND and/or RECEIVE must be used every cycle.

" INCORRECT
IF (A. LT. B) THEN

C = ,...
CALL SEND_REAL_32BIT(CI

END IF

" CORRECT
IF C A. LT. B) THEN

C = .

END IF
CALL SEND REAL 32B1T(C

Figure 4.29: NETWORK limitation 4. example. I
5. There is no guarantee the crossbar/sequencer compiler code is "optimal" since the

problem is NP-complete but every effect has been made to make it as efficient as possible.

1
I
I

4. Software Development Tools 37

4.3.2. USAGE program

The USAGE program analyzes multiple FORTRAN 77 programs in order to automatically
identify variables requiring interprocessor communication. Refer to Appendix M for the
complete program source.

The USAGE program takes as input multiple FORTRAN 77 programs and produces an output
which summarize all variables that share the same name and type and are used in more than one
program. Interprocessor variables which are only referenced in a program but never set are
output with the code "R". Interprocessor variables which are set or set and referenced in a
program are output with the code "S".

The USAGE program will make the following rules in determining variable usage:

1. variable usage will only be checked between the required "*LOOP* PROLOGUE"
and "*LOOP* EILOGUE" comments.

2. when a subprogram call is encountered, control is passed to that subprogram with the

resulting changes in the formal arguments reflected back to in the callers actual arguments.

3. that data and parameter statement assignments always occur.

4. that variable assignments inside and outside conditionals always occur.

5. that variable references inside and outside conditionals always occur.

The following figures will be used to demonstrate the USAGE program.

38 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I

default: summary.txt

USAGE=\
blockO.usage \

blockl.usage \I
block . usage\

PROCESSOR = \
01=blockl.usage \
02=block2.usage \

03=block3 .usageI

summary. txt: combine. txt
summary $(PROCESSOR) <combine.txt >surnrnry.txt

combine.txt: type.txt $(USAGE)I
combine $(PROCESSOR) <type.txt >combine.txt

type .txt: example. f
type example.f type.txtI

.SUFFIXES: .f .usage
f. usage:

usage S*.f $*.usage

Figure 4.30: USAGE example makefile.

PROGRAM blockOI

REAL x, y, z, t
REAL dx, dy, dz, dt
REAL altitude

DATA x, y, z, t /0., 0., 0., 0./
DATA dx, dy, dz, dt /1., 1., 1., l./

LOOP PROLOGUE

10 CONTINUEI
LOOP START

CALL send real 32bit(x)
x w x + dtdx-

CALL receive real_32bit(dz)

t t + dt

ILFP SO(t .LT. 1000.) GO TO 101

LOOP EPILOGUE

END Figure 4.31: USAGE example input (BLOCKO.F).3

4. Software Development Tools 39

PROGRAM blockl

REAL x, y, z, t
REAL dx, dy, dz, dt
REAL altitude

DATA x, y, z, t /0., 0., 0., 0./
DATA dx, dy, dz, dt /l., 1., 1., 1./

LOOP PROLOGUE

10 CONTINUE
LOOP START

CALL send real 32bit(y)
y = y + dt'dy -

CALL receive real 32bit(dz)
dy = dy + (0:1*dz)
t t + dt

LOOP STOP

IF (t .LT. 1000.) GO TO 10

LOOP EPILOGUE
END

Figure 4.32: USAGE example input (BLOCK1.F).

PROGRAM block2

REAL x, y, z, t
REAL dx, dy, dz, dt
REAL altitude

DATA x, y, z, t /0., 0., 0., 0./
DATA dx, dy, dz, dt /l., 1., 1., 1./

LOOP PROLOGUE

10 CONTINUE
LOOP START

CALL send real 32bit(z)
CALL send real 32bit(dz)
z = z + dtEdz
dz = dz + (0.1*dz)
t = t + dt

LOOP STOP
IF (t .LT. 1000.) GO TO 10

LOOP EPILOGUE

END

Figure 4.33: USAGE example input (BLOCK2.F).

I
40 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

PROGRAM block3

REAL x, y, z, t
REAL dx, dy, dz, dt
REAL altitude
DATA x, y, z, t /0., 0., 0., 0./
DATA dx, dy, dz, dt /l., 1., 1., l./

LOOP PROLOGUE

10 CONTINUE
LOOP START

CALL receive-real 32bit(x)
CALL receive-real-32bit (y) I
CALL receive real 32bit(z)
altitude = sqrt(xV*2 + y**2 + z*'2)
t = t + dt

LOOP STOP
IF (t .LT. 1000.) GO TO 10

LOOP EPILOGUEEND
Figure 4.34: USAGE example input (BLOCK3.F).

I
The following figure contains the output from the USAGE program produced after analyzing the
four input programs. A total of 5 variables were determined by USAGE to require interprocessor
communication. Note that the "T" line ends with "WARNING". It is there to inform 'he user
that the USAGE program recognized multiple assignments of the same variable, a potential
problem. In this case, the variable is a "replicated" variable. This means that the code that
changes this variable is identical each place it is set and consequently the warning may be
ignored. Finally, the bottom four lines are included to summarize the communication
requirements for each program. 3
Page 1 FP00IP011P02IP03IP04IP05lP06lP07P08IP091 .. IP311

---------------------- --

DZ REAL*4 I R I R ISI I I I I I I ... I I
,------------------------------- -------------- ,--------------------

T REAL*4 I S I S I S 1 I 1 1 I I ... I WARNING"---------------- ------------------------------------" l

X REAL*4 I S I I R I I I I I I I ... I I
.------ ---. --- ---. --- --- --.___.---.___.-_

Y REAL*4 I I S I R I I I I I I... I
--- --- --- --- --- --- --- --- --- ---- --------- . --- -.--_.----.___--- -- .- __.--

Z REAL*4 I I I SIRI I .. I I
-----------------------------------'---------------------------------'------"

p00 - block0.f, S = 2, R 1 1, 3
p01 = blockl.f, S = 2, R = 1, 3
p02 = block2.f, S = 2, R = 0, 3
p03 = block3.f, S = 1, R = 3, 4

Figure 4.35: USAGE example output (SUMMARY.TXT).

U
Limitations of the USAGE program:

1. Equivalenced variables are not supported. I
I
I

4. Software Development Tools 41

2. Common block variables are not supported.

4.3.3. ETIMER program

The ETIMER program analyzes multiple FORTRAN 77 programs in order to produce a parallel
program time profile from timing computation and I/O events. Refer to Appendix H for the
complete program source.

The ETIMER program takes as input multiple FORTRAN 77 programs and produces as output
modified FORTRAN 77 programs with timer code automatically inserted around each
computation block that is bounded by a SEND .nd/or RECEIVE or by the required "*LOOP*
START" and "*LOOP* STOP" comments. The ETIMER program also produces an output file
which contains unique event numbers for the project, each program, each computation block and
SEND and RECEIVE pair. This output, when combined with the actual times from the 286/386
real-time timers and formatted properly, can be input into Microsoft Project which will produce
an accurate representation of a parallel simulation.

There are two ways of determining the dependency information required by Microsoft Project:

1. Assume that the SEND FIFO is not full. Consequently, the SEND processors
execution is not-blocked but the RECEIVE processors execution is blocked until the SEND
occurs. The problem with the timing analysis charts produced by Microsoft Project with this
dependency information is that it is probably optimistic with respect to the amount of parallelism
shown.

2. Assume that the SEND FIFO is full. Consequently, the SEND and RECEIVE
processors execution is blocked until the RECEIVE occurs. The problem with the timing
analysis charts produced by Microsoft Project with this dependency information is that it is
probably pessimistic with respect to the amount of parallelism shown.

Unfortunately, because of the finite-length of FIFOs, at some times assumption I is valid, and
some times assumption 2 is valid. One way to model finite-length FIFO activity correctly is to
time the SENDs. This way, if a FIFO were fill, the time will be large, otherwise, the time will
be small.

After experimentation, we decided to do timing analysis on EXOSIM 2.0 using assumption I
with the number of 16-bit crossbar transfers as the time taken to do a SEND.

The following figures will be used to demonstrate the ETIMER program.

I
.2 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

efau>.: $(NEW) event.txt I
OLD = \

block0.f.old \
block2.f.old \
block3.f.old

NEW = \Il

blockl.f \
block2.f \
block3.f

$(NEW) event.txt: $(OLD)
cat $(OLD) I etimer I fsplit
mv main000.f event.txt

Figure 4.36: ETIMER example makefile. I
I

The following four output files were output from the ETIMER program.

I
PROGRAM blockO

REAL x, y, z, t
REAL dx, dy, dz, dt
REAL altitude

DATA x, y, z, t /0., 0., 0., 0./
DATA dx, dy, dz, dt /l., .., 1., 1./

CALL timerprologueo

10 CONTINUE

CALL send real 32bit(x)
CALL start timer(4)x Z x + dt~dx

CALL stoptimer(4)
CALL receive-real 32bit(dz)
CALL start-timer(5)
dx dx + (0.1dz)
t =t + dt

CALL stop timer(5)
IF (t .LT. 1000.) GO TO 10 1
CALL timerepilogue)
END

Figure 4.37: ETIMER example output (BLOCKO.F). I

I
I
I
I
I

4. Sof,,. - Development Tools 43

PROGRAM blockl

REAL x, y, z, t
REAL dx, dy, dz, dt
REAL altitude

DATA x, y, z, t /0., 0., 0., 0./
DATA dx, dy, dz, dt /I., 1., 1., 1./

CALL timer prologue)

10 CONTINUE

CALL send real 32bit(y)
CALL starE timner(8)
y = y - dt7dy
CALL stop timer(8)
CALL receive real 32bit(dz)
CALL start tlmer(9)
dy = dy + (0.1*dz)
t = t + dt

CALL stoptimer(9)
IF (t .LT. 1000.) GO TO 10

CALL timer epiloque()
END

Figure 4.38: ETIMER example output (BLOCK1.F).

PROGRAM block2

REAL x, y, z, t
REAL dx, dy, dz, dt
REAL altitude

DATA x, y, z, t /0., 0., 0., 0./
DATA dx, dy, dz, dt /1., 1., 1., l./

CALL timerprologue)

10 CONTINUE

CALL send real 32bit(z)
CALL send real 32bit(dz)
CALL start timer(13)
z = z + dtdz
dz = dz + (0.1ldz)
t = t + dt

CALL stop_timer(13)
IF (t .LT. 1000.) GO TO 10

CALL timer epilogue()
END

Figure 4.39: ETIMER example output (BLOCK2.F).

44 Annual Report: Digital Er :ulation Technology Laboratory Volume 1, Part 1

PROGRAM block3

REAL x, y, z, t
REAL dx, dy, dz, dt
REAL altitude

D-TA x, y, z, t /0., C., C., 0./

DATA dx, dy, dz, dt /I., 1., 1., 1.

CALL timer prologue()

10 CONTINUE

CALL receive real_32bit(x)
CALL receive-real_32bit (y)
CALL receive real 32bit(z)

CALL start timer(15)
altitude = sqrt (x**2 + y*2 + z**2)
t - t + dt

CALL stop timer(15)

IF (t .LT. 1000.) GO TO 10

CALL timerepilogue()
END Figure 4.40. ETIMER example output (BLOCK3.F).

I
The following figure contains the output from the ETIMER program produced after analyzing the
four input programs. 1
1 pi- "ect project 1
2 pr ram blockO 2
3 co munication x I real*4 3 .
4 computation ? 3 "31
5 compu tation ? 3 ":4,12"1

6 program blockl 2 "..

communication y 1 real*4 3 "

d coputation ? 3 "7" I
9 computation ? 3 "8,12"
10 program block2 2 "
11 communication z 1 re,' '4 3
12 communication dz 1 real!4 3 "11"

•
13 computation ? 3 "12" 1
14 program block3 2

15 .orrpitation ? 3 " 3,7, 11"

Figure 4.41: ETIMER example output (ETIMER.TXT).

The next figure contains the output after executing the four BLOCK.F programs on the PFP.
The output contains the following fields:

1. the timer number. 3
2. the comment "TIMER".

3. the length of time spent in a computation event during simulation time windowa.

4. the length of time spent in a computation cvcnt during simulation time windawb. 3
5. the length of time spent in a computation event during simulation time windowc.

I

I
4. Software Development Tools 45

This information, when combined with ETIMER.TXT, and formatted properly, is input into
Microsoft Project which then will produce an accurate representation of a parallel simulation in
the form of a Gannt chart for each simulation time window.

4 TIMER <time4a> <time4b> <time4c> ...
5 TIMER <timeSa> <time5b> <time5c> ...

TIMER <timeSa> <time b> <time8c. ...

9 TIMER <time9a> <time9a> <time9c> ...
13 TIMER <timel3a> <timel13b> <time13c> ...
15 TIMER <timel5a> <timel5b> <time!5c>

Figure 4.42: ETIMER example output (ETIMER.OUT).

I
Limitations of the ETIMER program:

1 1. The ETIMER program requires an output program (like Microsoft Project) in order to
display and manipulate the Gannt chart.I
4.4. Special purpose tools

This section will discuss programs designed to assist us in the transformation of the sequential
program EXOSIM 2.0 into a form suitable for porting to the PFP.

I 4.4.1. NAMELIST program

The purpose of the NAMELIST program is to transform the EXOSIM 2.0 namelist files into
FORTRAN 77 data statements. Refer to Appendix J for the complete program source.

This program was necessary since namelist statements are not valid FORTRAN 77. Also, we
wanted to eliminate as much host I/O as possible in order to make the program as machine
independent as possible.

I The command line syntax is:

3 namelist <input file> <output file>

where:
<input file> = input file name

<output file> = output file name

The following figures will be used to demonstrate the NAMELIST program.

I

I
46 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I I
default: example.out

example.out: example. txt I
namelist example.txt example.out

Figure 4.43: NAMELIST example makefile. I

$CONSTI I
CHAR1 = 'CONSTANT PARAMETER NAMELIST 1'

PI = 3.14,

DTEPS = 1.0E-6,

IPLOT = 1,

IPRINT = 1,
TABLE = 1.10, 2.20, 4 400, 8.800, 16.160,

32.32, 64.64, 128,128, 256.256, 512.512,

$END ARRAY = 9*0.0, 100.0, 9*0.0, 1000.0

Figure 4.44: NAMELIST example input (EXAMPLE.TXT). I
Using the above input, the NAMELIST program produced the following output. Note that each
variable or array assignment is made into one data statement.

*CONSTII
DATA charl /CONSTANT PARAMETER NAMELIST 1'/

DATA pi /3.14/
DATA dteps /l.OE-6/
DATA iplot /l/
DATA iprint /I/
DATA table /1.1, 2.2, 4.4, 8.8, 16.16, 32.32, 64.64, 128.128,

& 256.256, 512.512/
DATA array /9"0., 100., 9*0., 1000./

END Figure 4.45: NAMELIST example output (EXAMPLE.OUT). 1

I
Limitations of the NAMELIST program:

1. The NAMELIST program doesn't check variable type or array sizes, consequently, the 3
data statements may require some manual modifications.

I
4.4.2. EQUIVALENCE program

The EQUIVALENCE program takes as input a FORTRAN 77 program in order to extract
variable initialization information from equivalence and data statements. The output produced is

I

4. Software Development Tools 47

compatible with the PROLOG program explained later. Refer to Appendix G for the complete
program source.

The command line syntax is:

equivalence <input file> <output file>

where:
<input file> = input file name
<output file> = output fie name

The following figures will be used to demonstrate the EQUIVALENCE program.

default: example.out

example.out: example. f

equivalence example.f example.out

Figure 4.46: EQUIVALENCE example makeile.

I
48 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

SUBROUTINE SEEKER

EQUIVALENCE VAR(1) SAMACQ VAR) 2) SAMTRK
EQUIVALENCE VAR) 3) SAMTRM VAR(4) FOV
EQUIVALENCE VAR(5) SEKNOS(1) VAR(29) SEKTIM(1)
EQUIVALENCE VAR) 53) QNTZP VAR(54) RATE(l) m
EQUIVALENCE VAR(60) SNRMIN VAR(61) FOVLIM
EQUIVALENCE VAR(62) SNRACQ VAR(63) RFINAL
EQUIVALENCE VAR(64) ACQRNG(1,1)) VAR(80) TRGSIG(1)
EQUIVALENCE VAR(84) RNGTRK VAR) 85) RNGTRM
EQUIVALENCE (IVAR) 1) , SEKTYP , IVAR) 2) , ITRGSG
EQUIVALENCE (IVAR) 3) , BCKGRD

DATA NR,NI / 16, 3 /

DATA IREAL / 2221,2222,2223,2224,2227,2251,2275,2276,2282,2283,
1 2284,2285,2286,2302,2372,2374, 4-0 /

DATA LREAL / 1, 1, 1, 1, 24, 24, 1, 6, 1, 1,
1 1, 1, 16, 4, 1, 1, 4*0 /

DATA IINT / 41, 42, 43, 7*0 /

DATA LINT / 1, 1, 1, 7-0 I

END

SUBROUTINE TARGET

EQUIVALENCE VAR) 1) TARLEN VAR) 2) TARWID
EQUIVALENCE VAR) 3) GMU VAR) 4) TARPOS U
EQUIVALENCE VAR(7) TARVEL VAR(10) TARRI

EQUIVALENCE VAR) 11) CSOPOS VAR) 14) CSOVEL
EQUIVALENCE VAR) 17) CSORI VAR) 18) TNKPOS
EQUIVALENCE VAR) 21) TNKVEL VAR) 24) TNKRI
EQUIVALENCE VAR) 25) RHOPOS VAR) 28) RHOVEL
EQUIVALENCE VAR) 31) RHORI VAR) 32) CLTPOS

EQUIVALENCE VAR) 35) CLTVEL VAR) 38) CLTRI
EQUIVALENCE VAR) 39) DTR VAR) 40) WIDTH
EQUIVALENCE VAR(41) FOCLEN VAR) 42) RMULT

EQUIVALENCE (IVAR(1) , NOBJ , (IVAR(2) , ISKOUT
EQUIVALENCE (IVAR(3) , SEKTYP , (IVAR) 4) , NTARRS

DATA NR,NI / 22, 4 /

DATA IREAL I 3660,3661, 6,3662,3665,3668,3669,3672,3675,
1 3676,3679,3682,3683,3686,3689,3690,3693,3696,
2 2,3616,3614,3697,28"0 /

DATA LREAL / 1, 1, 1, 3, 3, 1, 3, 3, 1, 3
1 3, 3, 1, 3, 3, 1, 3, 3, 1,
2 1, 1, 1, 1,28 0 /

DATA IINT / 260, 241, 41, 261, 6-0 /

DATA LINT / 1, 1, 1, 1, 6*0

END

Figure 4.47: EQUIVALENCE example input (EXAMPLE.F). 3

Using the above figure as input (a FORTRAN 77 program fragment from EXOSIM 2.0), the I
EQUIVALENCE program produced the following output. The information contained about
each variables includes: 3

1. source file name

2. local variable name

I
1

4. Software Development Tools 49

3. global variable name

4. variable usage count

d(-UUSEEkER.FOR". "SAMACO", "RIN(2221) ".0)
d("UUSEEKER.FOR", "SAMTRK", "RIN(2222) ",0)
d(-UUSEEKER.FOR"."SAMTRM",-RIN(2223)".0)
d(-UUSEEKER.FOR', "FOV", "RIN (2224) ".0)
d ('UUSEEKER.E'OR', "SEKNOS", "RIN (2227) ".0)
d("UEJSEEKER.FOR" SEKTIM-, "RIN(2251)", 0)
d(nUUSEEKER.FOR","ONTZP","RIN(2275)",0)
d(nUUSEEKER.FOR", "RATE", "RIN(2276) ".0)
d(nUUSEEKER.FOR", "SNRMIN", "RIN(2282) ".0)
d(nUUSEEI(ER.FOR", "FOVLIM-, "RIN (2283)", 0)
d(-UUSEEKER.FOR", "SNRACQ", "RIN (2284) ",0)
d("UUSEEKER.FOR"RFINAL-, "RIN(2285) ".0)
d(-UUSEEKER.FOR", "ACQRNG". "RIN(2286) ".0)
d (-UUSEEKER.FOR", 'TRGSIG-, "RIN (2302) ",0)
d(-UUSEEKER.FOR"RNGTRK-,"RIN(2372) ".0)
d(-UUSEEKER.FOR","RNGTRM",nRIN(2374)",0)
d(nUUSEEKER.FOR",-SEKTYP-,"IIN(4l)",0)
d(-UUSEEKER.FOR", "ITRGSG", "IN (42) ", 0)
d("UUSF.EKER.FOR", "BCKGRD-, "IN (43) ",0)
d(-UUTARGET.FOR", "TARLEN", "RIN (3660) ",0)
d(-UUTARGET.FOR","TARWID",-RIN(3661)',0)
d(nUUTARGET.FOR", "GMU-, RIN(6) ".0)
d(-UtJTARGET.FOR",-TARPOS",-RIN(3662)",0)
I ("UUTARGET.FOR", "TARVEL", "RIN (3665) ".0)
d("UUTARGET.FOR". "TARRI","RIN(3668) ".0)
d(-Ut)TARGET.FOR", "CSOPOS", "RIN (3669) ",0)
d(-UUTARGET.FOR", "CSOVEL", "RIN (3672) ".0)
d ("UUTARGET.FOR', "CSORI", "RIN (3675) ",0)
d(-UUTARGET.FOR", "TNKPOS", "RIN(3676) ".0)
d ("UUTARGET.FOR", 'TNKVEL", "RIN (3679) ",0)
d (UUTARGET. FOR" *"TNKRI" ,"RIN (3 682) ", 0)
d(-UUTARGET.FOR', "RHOPOS", "RuN(3683) ",0)
d("UUTARGET.E'OR","RHOVEL","RIN(3686)",0)
d(-UUTARGET.FOR",-RHORI-,"RIN(3689)".0)
d ("UUTARGET.FOR", "CLTPOS", "RIN (3690) ".0)
d("UUTARGET.FOR",-CLTVEL",-RIN(3693)",0)
d ("UUTARGET.FOR", "CLTRI", "RIN (3696) ",0)
d (-UUTARGET.FOR", "DTR-, "RuN(2)". 0)
d("UUTARGET.FOR", "WIDTH", "RIN(3616)",0)
d("UUTARGET.FOR","FOCLEN", "RIN (3614) ".0)
d("UUTARGET.FOR"."RMULT","RIN(3697)",0)
d("'UUTARGET.F'OR","NOBJ","IIN(260)",0)
d("UtTARGET.FOR","ISKOUT"."IIN(241)",0)
d)"UtTARGET.FOR","SEKTYP","IIN(4l)",0)
d("UUTARGET.FOR","NTARRS","IIN(261)",0)

Figure 4.48: EQUIVALENCE example output (EXAMPLE.OUT).

Limitations of the EQUIVALENCE program:

1. The program was designed specifically for the EXOSIM 2.0 program.

4.4.3. COMMON program

The COMMON program takes as input a FORTRAN 77 program in order to extract global
vari.able information from common block staements. The output produced is compatible with
the PROLOG program explained later. Refer to Appendix D for the complete program source.

The command line syntax is:

I
50 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

common <input file> <output file> I
where: <

<input file> = input file name
<output file> = output file name I

The following figures will be used to demonstrate the COMMON program. I
default: example.out

example. out: example. f 3
common example.f example.out

Figure 4.49: COMMON example makefile.

SUBROUTINE ACCEL 1
C COMMON "RACCEL" USED FOR MIDFLIGHT CAPABILITIES ONLY

COMMON / RACCEL / DRSIGA, PSIA , THTA PHIA , THXZA ,
THXYA , THfZA THYXA THZYA THZXA
SFIA , SF2A DCA , TOACCE , GRLST ,
XYZDP , ABI2 , ABIl ABO2 , ABOl

END

SUBROUTINE KALMAN
C COMMON "RKALMN" USED FOR MIDFLIGHT CAPABILITIES ONLY

COMMON / RKALMN / TKF , IDRTOK , PP11 , PP12 , PP22
FY11 , Y12 P Y22 PLMDFP ,YLMDFP

PLAMH , YLAMH , PLAMDH, YLAMDH PLAMDF

YLAMDF , TGIL , KFMODE , IFPAS

Figure 4.50: COMMON example input (EXAMPLE.F). I

Using the above figure as input (a FORTRAN 77 program fragment from EXOSIM 2.0), the
EQUIVALENCE program produced the following output. The information contained about each
variables includes:

1. source file name

2. local variable name 5
3. common variable name

4. variable usage count

I
I
I

4. Software Development Tools 51

d("UUACCEL.FOR","DRSIGA', 'RACCEL.DRSIGA',O)
d("UUACCEL.FOR', 'PSIA", RACCEL.PSIA", 0)
d("UUACCEL.FOR", "THTA", "RACCEL.THTA', 0)
d ("UEACCEL.FOR","PHIA", RACCEL.PHIA", 0)
d("UUACCEL.FOR","THXZA","RACCEL.THXZA", 0)
d ("UrACCEL.FOR","THXYA", RACCEL.THXYA, 0)
d("UUACCEL.FOR. "THYZA", RACCEL.THYZA",0)
d(-UUACCEL.FOR", "THYXA","RACCEL.THYXA',0)
d("UUACCEL.FOR","THZYA",'RACCEL.THZYA',0)
d("UUACCEL.FOR", THZXA", RACCEL.THZXA", 0)
d("UUACCEL.FOR'. "SFIA", RACCEL.SFlA', 0)
d("UUACCEL.FOR", "SF2A', RACCEL.SE'2A',0)
d(")JUACCEL.FOR","DCA", RACCEL.DCA",0)
d(-UUACCEL.FOR","T0ACCE",'RACCEL.TOACCE",0)
d(-UUACCEL.FOR","GRLST"RACCEL.GRLST",0)
d("tJUACCEL.FOR', "XYZDP", 'RACCEL.XYZDP",O)
d("tUACCEL.FOR","ABI2","RACCEL.AB12",0)
d("UUACCEL.FOR","AB~l", RACCEL.ABI1", 0)
d (-UUACCEL.FOR", "ABO2", "RACCEL.ABO2', 0)
d(-UUACCEL.OR", 'ABO1", "RACCEL.ABOl",0)
d(-UUKALMAN.FOR', "TKF-, "RKALMN.TKF.0O)
d(-UUKALKAN.FOR",-IDRTOK", "RKALMN.IDRTOK",0)
d("UtJKALMAN.FOR",-PP11",-RKALMN.PP11",0)
d("tJUKALMAN.FOR", "2212", "RKALMN.PP12", 0)
d (-UUKALMAN.FOR",-P"222"RKALMN.PP22', 0)
d(-UUKALMAN.FOR","PYhl", RKALMN.2Y11',0)
d(-UUKALMAN.FOR", PY12."RKALMN.PY12",0)
d("rUrKALMAN.FORn, "PY22", "RKALMN.PY22', 0)
d("UUKALMAN.FOR", "PLMDFP","RKALMN.PLMDFP",0)
d ('UUKALMAN.FOR", "YLMDFP", "PKALMN.YLMDFP', 0)
d ("UUKALMAN .FO!R", 'PLAM))", RKALMN .PLAMHl", 0)
d(UUKALMAN.FOR. "YLAMH', "RKALMN.YLAMH,0)
d("UUKALMAN.FOR', 'PLAMDH", "RKALMN.PLAMDH",0)
d ('UUKALMAN. FOR", 'YLAMDH", "RKALMN .YLAMDH', 0)
d ("UUKALMAN.FOR,"PLAMDF", "RKALMN.PLAMDF",*)
d (-UUKALMAN .FOR", 'YLAMDF, RKALMN.YLAMDF", 0)
d(-UUKALMAN.FOR", TGIL", 'RKALMN.TGIL",0)
d("UUKALMAN.FOR", "IFMODE", "RKALMN.KFMODE", 0)
d("UtJKALMAN.FORn,"IFPAS', "RKALMN.IFPAS",0)

Figure 4.51: COMMON example output (EXAMPLEOUT).

Limitations of the COMMON program:

1. The program was designed specifically for EXOSIM 2.0 program.

4.4.4. PROLOG utility

The PROLOG program "varusage" was written to assist in the systematic initialization of all
required variables. Once other utilities had determined the dependencies and the correct initial
values, varusage would then analyze the dependencies and group them into "optimal" sets. This
enabled us to combine various types of initializations (BLOCKDATA routines, explicit
assignments, and NAMELISTs) into short files of DATA statements which could be included
only in the files where they were necessary.

One approach to this is to create a unique include file for each subroutine and main program
partition in the multi-partiion application (EXOSIM, in this case). The problem with this is that
many of the same initialization statements will appear in multiple include files. Commonly-used
variables and constants, like the radius of the earth and nt, for example, would have to be
initialized in many DATA statements spread across several files. If the initial value of variable

52 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I

were changed, as in a parametric study, it would be necessary to manually edit many files to m

make the same change.

Consequently, we chose another approach in which we found subsets of variables which were n
always used together. For example (hypothetically), we would find that every routine which
required an initial value for latitude also required an intial value for longitude (and perhaps other
mutually-used values as well). Then, all of these variable names were grouped together in a
single include file with the appropriate DATA statements, and a list was maintained of which
routines required each particular include file. Of course, there was the possiblity that we would
find that the variables did not group particularly well, perhaps resulting in hundreds of include
files with only one or two DATA statements in each file. It turned out, though, that many
groupings were found, greatly simplifying our file management tasks. 3
The varusage program was used several times. First, it was used to group the variables found in
the many COMMON blocks spread throughout the principle subroutines of EXOSIM. Later, it 3
was applied to the BLOCKDATA variables and to the so-called "dynamic" variables included as
COMMON blocks in the main program. U
The input to varusage is a list of dependencies in the form

d("Filename.src","aliasVARa","VARa",NumRefs) 3
where d is simply a keyword which actually corresponds to a PROLOG predicate, Filename.src
is a fortran source file name, aliasVARa is the commonly-used short name of an initialized
variable used within Filename.src, VARa is a longer, more fully descriptive name which we use l
to indicate the usage of the variable within a COMMON block, and NumRefs is the actual
number of times that the variable is referenced. This input list is created automatically by a
separate utility program which parses the various subroutines (or main program segments, in I
some cases) and outputs a line for each variable under consideration, even if it is not referenced
at all (in which case NumRefs is set to 0). 3
An exampie inpuL tlc ot =cpendX ,iiL.As lb ivc., bcl.... The actual initial values of variables need
not be provided, since varusage simply creates sets of groupings. Other utility programs are used

to merge the output of varusage with the known initial values, thus creating the files of DATA
statements, which may be classified. In this example, all of the FORTRAN source files end with
the extension .F, as in UUKVAUTO.F. The aliasVARa and VARa parameters may seem
redundant, since the VARa parameter (in this example) is always aliasVARa prefixed by the
COMMON block name in which it was found. In other applications of varusage, however, we
used this feature to detect variables which were in the same position of multiple COMMON 3
blocks, but named differently (and thus aliased). This was important to ensure that the
differently-named variables were in fact initialized conectly.

Example input file for EXOSIM subroutine COMMON blocks:

d("UUKVAUTO.F","S 17,,,"RKVAUT.SW 7,,5)
d("UUKVAUTO.F ","SW18","RKVAUT.SW18"o,5) I
d ("U UKVAUTO. F", "SWI 8P", "RKVAUT. SWI8P" , 4)
d("UUKVAUTO.F","SWSY ","RKVAUT.SWSY",4)
d("UUKVAUTO.F","SW19","RKVAUT.SWl9", 5)
d("UUKVAUTO.F","SW19P","RKVAUT.SW19P",7)

I

4. Software Development Tools 53

d(-UUKVAUTO.F-,-SW19Y","RKVAUT.SW19Y",7)
d(-UUKVAUTO.F', "IROLL-, RKVAUT.IROLL-,3)
d(-UUKVAUTO.F', "TPT0N2-, RKVAUT.TPTON2", 15)
d(-UUKVAUTO.F-,"TYTON2-.'RKVAUT.TYTCN2-,15)
d (UUXVAUTO.F","TNEXTP-, S1RVAUT.TNEXTP-,5)
d (UUKVAUTO.F", TNEXTY", RKVAUT. TNEXTY",5)
d(-UUKVAUTO.F-, "FLTCPL". "RKVAtJT.FLTCPL",2)
d(-UUKVAUTO.F-, "FLTCYL", RKVAUT.FLTCYL-,2)
d("UUACCEL.F","DRSIGA-,"RACCEL.DRSIGA-,3)
d("UUACCEL.F", "PSIA", "RACCEL.PSIA", 3)
d (-UUACCEL.F", "THTA-, RACCEL. THTA-,3)
d(-UUACCEL.F-, "PHIA", "RACCEL.PHIA-,3)
d(-UUACCEL.F-,-THXZA-,-R)ACCEL.THXZA-,2)
d("UUACCEL.F","THXYA-, RACCEL.THXYA-,2)
d("UUACCEL. F", THYZA-, RACCEL.THYZA-,2)
d(-UUACCEL.F-" THYXA-,-RACCEL.THYXA-,2)
d(-UUACCEL.F-, "THZYA-, RACCEL.THZYA-,2)
d(-UACCEL.F-, "THZXA-, RACCEL.THZXA-,2)
d(-UUACCEL.F-,-SFIA-, RACCEL.SFlA-,6)
d(-UUACCEL.F",-SF2A'""RACCEL.SF2A-, 6)
d(-UUACCEL.F-, "DCA-, RACCEL.DCA",4)
d("UUACCEL.F","TOACCE","RACCEL.TOACCE",2)
d("tUACCEL.F-,-GRLST-, RACCEL.GRLST-,6)
d("UUACCEL.F", "XYZDP-,-RACCEL.XYZDP-,6)
d("UUACCEL.F", "AB12-" RACCEL.ABI2-,3)
d ("ULACCEL.F-, "ABIl", "RACCEL.ABIl-, 4)
d ("IUACCEL.F", "ABO2-, 'RACCEL.AB02",3)
d ("UUACCEL.F", "ABOl","RACCEL.AB0", 4)
d(-UUACSTHR.F-,-TREFLA","RACSTR.TREFLA-,O)
d(-UUACSTHR.F", "TLSTC-, "RACSTR.TLSTC',O)
d(-UUACSTHR.F-, "ACSF-, "RACSTR.ACSF", 22)
d(-UUACSTHR.F", 'AOFFI",-RACSTR.AOFF1, 6)
d(-UUACSTHR.F", "AOFF2-, 'RACSTR.AOFF2",6)
d(-UUACSTHR.F", "TMACSA-, "RACSTR.TMACSA', 43)
d("UUACSTHR.F-, "THACSA-, "RACSTR.THACSA",39)
d(-UUACSTHR.F-,"LENA","RACSTR.LENA-, 26)
d(-UUACSTHR.Fn, "TMACSB', "RACSTR.TMACSB",43)
d('UUACSTHR.F","THACSB","RACSTR.THACSB", 39)
d("UUACSTHR.F", "LENB-, RACSTR.LEN", 26)
d("UUAERO.F","TLSTR","RAERO.TLSTR",O)
d)"UUAERO.F-, 'MACHL-, RAERO.MACHL', 0)
d("UUAERO.F", "ALFATL-, "RAERO.ALFATL", 0)
d("UATMOS.F",-TLSTA-, RATMOS.TLSTA",0)
d (UUATMOS.F", "ALTL-, "ATMOS.ALTL, 0)
d("UUBTHRST.F",-TLSTB-, "RBTHRT.TLSTB",0)
d)"UUBTH)RST.F-, "TOL-,-RBTHRT.TOL, 0)
d(-UUBTHRST.F-, "BOFF2-, "RBTHRT.BOFF2-, 4)
d ("UUFRCTHR.F-, TLSTF","RFRTHR.TLST", 0)
d ("UUFRCTHR.F", "TREFL-, RFRTHR. TFEFL', 0)
d(-UUFRCTHR.F",-,VC00", "RFRTHR.VCOD-,O)
d ("UUGYRO.F", "PSIG", "RGYRO.PSIG-, 3)
d(-UUGYRO.F", THTG-, RGYRO.THTG-, 3)
d (-UUGYRO.F-,"PHIG-,"RGYRO.PHIG",3)
d(-UUGYRO.F-,-THXZG-,-RGYRO.THXZG",2)
d(-UUGYRO.F",-THXYG",-RGYRO.THXYG",2)
d("UUGYRO.F", "THYZG", "RGYRO.THYZG",2)
d(-tJ)GYRO.F", "THYXG-, "RGYRO.THYXG-, 2)
d ("UUGYRO.F", "THZYG", "RGY)RO.THZYG", 2)
d("UUGYRO.F-,"THZXG","RGYRO.THZXG",2)
d ("UUGYRO.F", "SF 1G", "RGYRO.SFiG"', 6)
d(-UUGYRO.F-,-SF2G-, RGYRO.SF2G-, 6)
d("UUGYRO.F". "DCG", RGYRO.OCG-, 4)
d(-UUGYRO.F-,"TOGYRO', "RGYRO.T0GYRO",2)
d)'UUGYRO.F-,-"dM0", "RGYRO.CIMO", 2)
d(-UUGYRO.F-, "WBI2-, "RGYRO.WBI2", 3)
d(-UUtGYRO.F,"WBXV',"RGYRO.WBIl",4)
d(-UtJGYRO.F-,-WBO2",-RGYRO.WBO2',3)
d(-UUGYRO.F-,-WBOl","RGYRO.WBOl-,4)
d("UUGYRO.Fn, "DRSIGG", ")GYRO.DRSIGG-, 3)
d(-UUKALMAN.F-,-TKF",-RKALMN.TKF-,4)
d(-UUKALMAN.F'",-IDRTOK","RKALMN.IDRTOK",3)
d(-UUKALMAN.F-",PPII","RKALMN.PPII",15)
d("dUKALMAN.F-,"PP12-,-RKALMN.PP12-,8)
d " UUKALMAN.F",-P22 ,"RKALMN.P222', 12)
d(-UUKALMAN.F,'2YII",RKALMN.PYll",15)
d(-UUKALMAN.F","PY12-,-RKALMN.PY12",8)
d(-UUKALMAN.F,"PY22","RKALMN.PY22",12)
d(-UUKALMAN.F-,-PLMOF2","RKALMN.PLMCP",2)
d("UU(ALMAN.F-, "YLMDFP",-RKALMN.YLMF",2)
d("UUKALMAN.F", "PLAMH", "RKALMN.PLAMH",4)
d("UUKALMAN.F",-YLAMH","RKALMN.YLAMH",4)

54 Annual Report: Digital Emulation Technology Laboratory Volume 1. Part 1

d("UUKALMAN.F", "PLAMDH", "RKALMN.PLAMDH', 6)I

d(-UUKALMAN.F-,-YLAMDH",-RKALMN.YLAMDH", 6)
d("UUKALMAN.F",-PLAMDF', "RKALMN.PLAMF..3)
d ("UUI(ALMAN.F". "YLAMDF", "RKALMN.YLAMDF", 3)
d(-UUKALMAN.F-, "KFMODE", "RKALMN.)(FMODE", 17)
d(-UUKALMAN.E"',-IFPAS",-RKALMN.IFPAS",5)I
d("UUMASSPR.F". "TLSTM-, "RMASS.TLSTM"0O)
d(-UUMASSPR.F". "MASSL". "RMASS.MASSL',0)
d ("UUMCAUTO.F-, "ANGACL", "RMAUTO.ANGACL", 12)

d('tJUMCAUTO.F-, "IMCPAS-, "RMAUTO.IMCPAS", 8)

d("UUZ4CAUTO.F",-TP2END", "RMA)JTO.TP2END-,3)I
d(-UUMCAUTO.F-, "TP3END-, RMA(JTO.TP3ENO", 4)
d("UUMCAUTO.F","IP2EN4O',"RMAUTO.IP2EN0',4)
d("UtJMCAtTO.F","TCOAST","RMAUTO.TCOAST', 4)
d ("UUMCAUTO.F", "ICOAST-, "RMACJTO. ICOAST", 4)
("tUMCA)JTO.F", "TRDONE", "RMAUTO.TRDONZ", 4)I

d("UUMCAUTO.F","IRATE","RMAUTO.IRATE",5)
d("UUMCAUTO.F', "IACSBI', "RMAUTO.IACSBI",10)
d("UUMCAUTO.F",-IACSB2-, "RMAUTO.IACSB2", 3)
dC"UUMCAUTO.F", "ICNT-, RMA)JTO.ICNT", 10)
d("tJCMCAUTO.F", "IVPFL", "RMAUTO.IVPFL",39)
d("UUMCAUTO.F",-IVPFLN", "RMAUTO.IVPFLN-,7)I
d(nUUMCAUTO.F", "TBURN2-, "RMAUTO.TBURN2-, 3)

d ("UUMCAUTO.F", -OMEGAI-, "RMAUTO.OMEGAI", 3)
d)'UUMCAUTO.F-, TLSTMA', "RMAUTO.TLSTMA",2)
d (-UtMCAUTO.F" * AACCEL",- RMAUTO .AACCEL", 20)
d("UUMCGtJID.F", "ISEQ", 'RMGUID.ISEQ", 12)I
d("UUMCGUID.F", "TVCOMP-, "RMGUID.TVCOMP-, 3)

d("UUMCGtJID.Fn,"OMEGAO",-RMEJID.OMEGAO", 6)
d(-UUMCGUID.F", "IMIDB2-, "RMGUID.IMIDB2",3)
d("UUMCGtJID.F"'.TMIDB2",-RMGUID.TMIDB2",2)
d(-UUMCGUID.F-,-ISK3ON",-RMGUID.ISK3ON",2)I
d("UtJMISSIL.d', XYZLCH-, "RMISSL.XYZLCH", 6)
d("UUNAVIG.F-,-GRLAST",-R)NAVIG.GIRLAST", 6)
d(-UUNAVIG.F-,-MNAV-,-RNAVIG.MNAV",0)

d("UUNAVIG.F", "DTXO", "RNAVIG.DTXO",3)
d("UUNAVIG.F-, "OTYOC"R FNAVIG.DTYO", 3)I
d(-UUNAVIG.F-, "0TZO", "RNAVIG.DTZO", 3)
d('UUNORM.F". "GSET", "NORCOM.GSET",2)
d("UUNORM.F"."ISET-,"NORCOM.ISET",4)

d(-UUOBTARG.F'",nFIRST2", "ROBTRG.FIRST2', 2)

d (-UUOBTARG.F', GRTPST-, "ROBTRG.GRTPST-, 2)I
d(-UUSSPLAG.F",-NLATCH", "RSPLAG.NLATCH-, 46)
d("UUSSPLAG.S", "TLATCH-,"RSPLAG.TLATCH-, 6)
d("UUSSPLAG.F", "LA?4MSV-, "RSPLAG.LAMMSV',10)
d("UUSSPLAG.F","R.ELSV","RSPLAG.RRELSV",15)
d("UUSSPLAG.",."V)RELSV-, "RSPLAG.VRELSV".15)I
d(-UUSSPLAG.F-, "T12M4SV",-"RSPLAG.TI2MSV", 45)
d("UUSSPLAG.'", SNRSV-, "RSPLAG.SNRSV-,5)
d(-UUTA)RGET.F-,-TL1","RTARG.TL1",3)
d)"VUTARCET.F", "GRTLST", "RTARG.GRTLST", 2)
d("UUTARGET.F", "FIRSTi", "RTARG.FIRST1", 2)
d("UUVCSTHR.F-, "TREFLV-,-RVCSTR.TREFLV',0)I
d("UUVCSTHR.F", "TLSTV", 'RVCSTR.TLSTV",0)
d(-UUVCSTHR.F", "TMVCS", "RVCSTR.TMVCS",17)
d("UUVCSTHR.F",-THVCS-,-RVCSTR.THVCS", 13)
d)"UUVCSTHR.F-, "LENVCS", "RVCSTR.LENVCS', 3)

The output of varusage for this example is given below. There are two output files. One lists the
merged variables and the other lists the source files which in effect "need"' each of the mergedI
groups. First we show the merged variable groups. The first few lines are warning messages,
indicating that some variables were not used at all. The significant part of the output follows,
headed by the words "Merged lists of dependencies." Within this section are multiple lists, eachI
beginning with a program -generated filename for the DATA statements. This filename is used as
a cross-reference to the other output file. This list of depencencies is fed to another utility which3
actually created the files of DATA statements.

Example output file (I of 2):I
RACSTR.TREFL.A/REFLA not used in UUACSTHR.F
RACSTR.TLSTC/TLSTC not used in UUACSTHR.F
RAERO.TLSPR/TLSTR not used in LUAERO.F3

4. Software Development Tools 55

RAERO.MACHL/MACHL not used in UUAERO.F
RAERO.ALFATL/ALFATL not used in UUAERO.E'
RATMOS.TLSTA/TLSTA not used in UUATMOS.F
RATMOS.ALTL/ALTL not used in UUATMOS.F
R8THRT.TLSTB/TLSTB not used in UUBTHRST.F
RBTHRT.TOL/TQL not used in UUBTHRST.F
RFRTHR.TLSTF/TLSTF not used in UUFRCTHR.F
RFRTHR.TREFL/TREFL not used in UUFRCTHR.F
RFRTHR.VCOD/VCOD not used in UUFRCTHR.F
RMASS.TLSTM/TLSTM not used in UUMASSPR.F
RMASS.MASSL/MASSL not used in UUMASSPR.F
RNAVIG.MNAV/MNAV not used in UUNAVIG.F
RVCSTR.TREFLV/TREFLV not used in UUVCSTHR.F
RVCSTR.TLSTV/TLSTV not used in UUVCSTHR.F

Merged lists of dependencies:

^/INCLUDE/SSDYN01 .DAT
FLTCYL
FLTCPL
TNEXTY
TNEXTP
TYTON2
TPTON2
IROLL
Swigy
sw19p
SWi9
SWl8Y
SWl8P
SW1B
SW17

'/INCLUDE/SSDYNO2 .DAT
ABOl
AB02
ABIl
AB 12
XYZDP
GRLST
TOACCE
DCA
SF 2A
SF1A
THZXA
THZYA
THYXA
THYZA
THXYA
THXZA
PRIA
THTA
PSIA
DRSIGA

^/INCLUDE/SSDYNO3.DAT
LEN8
THACSB
TMACSB
LENA
THACSA
TMACSA
AOFF2
AOFF1
ACSF

^/INCLUDE/SSDYNO4 .DAT
BOFF2

^/INCLUDE/SSDYNO5 .DAT
ORSIGG
WB0l
WBO 2
WBIl
WBI12
CI MO
TOGYRO

56 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I

DCGU
SF1G

THUXG
THZYG

THYXGI
THXYG
THXZG
PHIG

THTGI

^/INCLUDE/SSDYNO6 .DAT

IFPASI
KFMODE
YLAMDF
PLAMDF
YLAMDH
PLAMDH YLAMU
YLAMH
P LMDFP

PY22

PY12

PP12
P?11

IDRTOK

^/INCLUDE/SSDYND7 .DAT

AACCEL

OMEGAI
TBURN2
IVPFLN

IVPFL

IACSB2
IACSB1
IRATE

TRDONE

TCOAST
IP2END

TP3END

TP2ENDI
IMCPAS
ANGACL

^/INCLUDE/SSDYNO8 .DAT

ISK30N
IMIDB2

OMEGA 0
TVCOMP

I SEQI

"/INCLUDE/SSDYN1O9.DAT

DTZO
DTYO

DTX 0

^/INCLUDE/SSDYN 1. DAT

ISETU

GSET

4. Software Development Tools 57

^/INCLUDE/SSDYN12.DAT
GRTPST
FIRST2

^/INCLUDE/SSDYN13.DAT
SNRSV
TI2MSV
VRELSV
RRELSV
LAMMSV
TLATCH
NLATCH

^/INCLUDE/SSDYNI4 .DAT
FIRST1
GRTLST
TL1

^/INCLUDE/SSDYNI5.DAT
LENVCS
THVCS
TMVCS

The other output file is given below. The peculiar format is actually the macro language of a
commonly-used programmer's editor called "Brief." This output file can be compiled and run in
the editor to automatically add the necessary include statements back into the source FORTRAN
files. Note that the included filenames correspond to those in the list above. For example, the
macro below will first open the file UUKVAUTO.F and add the FORTRAN statement

$INCLUDE ('
^
/INCLUDE/SSDYNO1 .DAT)

since it knows (from the file above) that A/INCLUDE/SSDYNOI.DAT will intialize several
variables that are in fact needed in UUKVAUTO.F. This particular example is not nearly as
interesting as some much longer examples, in which the same file of DATA statements is
included in more than one source file.

Example output file (2 of 2):

(macro insertall

(edit file "UUKVAUTO.F")
(search fwd "- DATA

"
0)

(end of line)
(insert "\nSINCLUDE('^/INCLUDE/SSDYN1!.DAT')")
(write buffer)
(edit file "UUACCEL.F")
(search fwd - DATA " 0)
(end of line)
(insert "\nINCLUDE''^/!NCLUDi/SSDYNO2.DATj")
(write buffer)
(edit file "UUACSTHR.F")
(search fwd " DATA " C)
(end of line)
(isert "\nSINCLUE('^/:NCLUDE/SSDYN3.DAT ')

")
writebuffer)
(edit file "UUBTHRST.FP)
(search fwd "* DATA 0)
(end of line)
(insert\nNCLUDE(INCLDESSDYNC4.CAT')
(write-buffer)
(edit file "IUUGYRC.F")
(searcn fwd " DATA 0)
(end of line)
(insert "\n$NCLUE(' /7

N C L U
ZE/SDYN .;A-')")

(write buffer)
(edit file "UUKALMAN.F")
(search fwd - DATA

"
0)

(end of line)

I
58 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

(insert "\n$INCLTDE('^/INCLUDE/SSDYNC6. AT')')
(write buffer)

(edit file "UUMCAUTO.F")
(search fwd - DATA " 0)
(ena of line)
(insert "\n$INCLUD2('^/INCLUDE/SSDYN07.DAT

'
)'(write buffer)

(edit file "UUMCGUID.F")
(search fwd "- DATA " 0)
(end of line)
(insert "\n$INCLUDE('^/INCLUDE/SSDYN08.DAT

'
) ")

(write buffer)
(edit file "UUMISSIL.F")
(search fwd "" DATA " 0)
(end of line)
(insert "\n$INCLUDE('^/INCLUDE/SSDYN09.DAT

'
)")

(write buifer)
(edit file "UUNAVIG.F")
(search fwd "* DAA

"
0)

(end of-line)
(insert "\n$INCLUDE('^/INCLUDE/SSDYNI0.DAT

'
)")

(write buffer)
(edit file "UUNORM.F")

(search fwd "* DATA
"

0)
(end of line)
(insert "\n$INCLUDE('^/INCLUDE/SSDYN11.DAT' ")
(write buffer)
(edit file "UUOBTARG.F")

(search fwd "* DATA
"

0)
(end of line)
(insert "\n$INCLUDE('^/INCLUDE/SSDYNI2.DAT')")
(write buffer)
(edit file "UUSSPLAG.F")

(search fwd "* DATA "
0)

(end of line)
(insert "\n$INCLUDE('^/INCLUDE/SSDYNI3.DAT')

")

(write buffer)
(edit file "UUTARGET.F")

(search fwd "* DATA
"

0)
(end of-line)
(insert "\n$INCLUDE('^/INCLUDE/SSDYNI4.DAT')

')

(write bufferI
(edit file "tUVCSTHR.F")
(search fwd "* DATA " 0)
(end of line)
(insert "\n$INCLUOE('^/INCLUDE/SSDYNl5.DAT'

")

(writebuffer)

The listing of the source code for the varusage utilit , , follows. It is written in PROLOG, 3
which is not particularly easy to follow if one is not r ir with the language. PROLOG is

actually quite intuitive, once one understands the progr,- liow and basic operations, including

the binding of variables. No attempt will be made to explhiul PROLOG here.

varusage program listing (PROLOG source code):

/-

Fir, variables used in same sets of ft es, oasea
o.. an input file of tke form I
d("Filel.src","aliasVARa","VARa "

,N,;Tes)
d("File2.src","aliasVARk","VARP",N, Fosj
etc.

trace

drma ns
tile = datafile" varFile; zat:i.e
sourcefile, variable, alia- = string
one d a record = d(sourceie,Is,varLe,eoe
filelist = sourcefile*
variablel'st 'variable*

aliaslist : alias* I
I

daabse- -rcod4.
Software Development Tools 59

v (aliaslist, variable)
database - d record

depends(sourcefile, variable)
database - dl-record

dl(filelist, variable)
database - cdl record

cdlifilelistE, variablelist)
database - index-record

index (integer)

p redi ca te s
fiile consult(string)
repfile (file)
assert_new-v(alias, variable)

assert_d_and maybe v(one_d_a_record)
build depend-lists
write depend lists
merge same depends (filelist)
retract one cdl(filelist, variablelist)I build combined depend lists
write list (aliaslist)
write combined-depend_lists
write one cdl(filelist, variablelist)
write vlist w aliases(variablelist
write varia~le- w aliases(variable
member -(variable, variablelist)
member(alias, aliaslist)
member(sourcefile, filelist)
m~ood sublist(filelist, filelist)
sublist(filelist, filelist)I length(filelist, integer)
union (filelist, filelist, filelist)
append (variablelist, variablelist, varI,,nel :st)
superset(filelist, variablelist
form filename(integer, string)
write -flist(filelist, stri-ig)
mergefists
go

clauses

X = H.

member(X,[ITI)

member
(X, T)

assert new v(A,V)

/* checks to see if alias prey used ~
/* always fails, and assertion occurs helow
v (AL, Vl),
member (A, AL),I V <> Vl,
write("\Warning! Alias ",A," is used --y Lot-n ",V, and ",Vl(,
fail.

assert_new-v(A,V)

v (AL, V),I membe r (A, A L) ,
assert _new-%v(A,V)

retract (v (AL,V) ,v record),

AT-l = [A 1 ALI],I write("\nWarning! Variable ",V," 4s known ov aliases ",AL.),
assertz(v)ALI,V),v _record),

/* There are more v()s, but we only need this one '
a3ssert_ new_v)A,V) :
assert (V ([A] ,V) ,v _record).

assert _d_and mayLe_'v(ern)
Te rt = d (F, A. V, N)
N - 0,
write(" \n", V, "/",A, " not used n ",F),

assert d and mnaybe v()Term)
Term = d(F,A,V, _T

ShortTerm = depends(,)
assertz(ShortTerm,d_ record),
assert new v (A,V').

file consult (F4 eNane)
openread (data f. Ic, F. Le ae-),Iede ied t f l)

60 Annual Report: Digital Emulation Technology Laboratory Volume 1. Part I

reptile (datafile),I
readterm(one d a record, Term),
assert -d -and-maybe_v(Term),
fail.

file-consult) _.

repfile(). I
repfile(F) :-not (eof(F)), repfile(F).

build_depend_lists

V(Fv),
findall (S,depends(,V),L),
assertz (dl (L,V) ,dl record),
fail.

build_ depend_lists.

rerc~n d)FVretract(cdl(FL, VL),cdl_record),

merge -same depends (FL)-

dl (FL,V),

retract one cdl) FL, VL),
assertz~cdl(FL, [V)VLI), cdl_record)
fail.

merge same-depends(_

build-combined-depend_lists
V(- v),
dl(FL,V),
retract~dl(FL,V), dl record),I
assertz(cdl(FL, [VI),cdl-record),

merge same depends (FL),
fail.

build_combined depend_lists.

write depend listsU
dl)FL, V),
writef("\nlklOs : -,)
write (FL),

write_depend lists.I

write list))]).
write list([HITI)

wriie ("n", H4),U

write variable-w-aliases(V)
v (AL, V) ,
write_ list (AL) .3

write vlist w aliases([I
write-vlist-waliases(CHITVLI

write-variable w aliases!)),
write-vlist-w-aliases(TVL).

write flist(U),).
writeflist([HITJ,rncludeName)

write(" (edit-file H",H."\") \n") ,
write(" (search fwd \" ATA \11 0)\n"),

write("(insert \"\\n$INCLUDE)'",,IncludeName,"')\")\n"),

write)" (write buffer) \n"),
write-flist (T, IncludeName).

form filename(I,FN)

str_ nt (S. I),

concat(TmpStr,II.OAT",FN),3

form filename(T,FN)
str jot (S, 1) ,
concat)"^/INCLUOE/SSDYN", S.TmpStr),
concat)1'mpstr, ".DAT'",FN),3

wrjt,_one_cdl(FL,VL)
writedevice(varFile).

4. Software Development Tv~l, 61

retract(index(I), index_record).

form-filename (I, FName),
write(I\n\n,FName,I' **),
Il = 1+1,
assert (index (Ii)),
write vlist w aliases(VL),
writeT"\n%%-i),
wrjtedev-4ce (batFile),
write-flist (FL, FName).

write -combined depend lists
assert(index(l)),
cdl(FL, VL),
write-one-cdl(FL, VL),
fail.

write-combined depend lists.

sublistl, _).
sublist(EHL1], L2)

member(H,L2),
sublist(Ll,L2).

length (C[1, 0).
length((_ ITI,X)
length(T,Y),
X = Y+l.

good_sublist(L. Ll)
sublist(L, Ll).

legt I L l
length (L, X)

X > 1,
Xi > X,
Xl-X < 1.

union(H, L2, L2).
union([XILl], L2, L3)

member (X, L2),
union(Li, L2, L3 I

union ([XtLl), L2, (XIL31)
unionl(Li, L2, L3)

append([], L2, L2).
append([X Ll). L2, IXIL3])

append(Li, L2, L3)

superset(FL, VL)
cdl(FLl, VUl(,
good -sublist (FL, FLI),
append(VL, VUl, VL2),
union(FL, FLi, FL2),
retract (cdl (FL,VL) ,cdl _record),
retract (cdl (FLI,VLl) ,cdl record),
assertz(cdl(FL2, VL2),cdl _record),

mergelists
cdl (FL,VL),
superset (FL, VL) ,
fail.

rergeli sts.

go :
trace (off),
openwrite(varFile,'VARUSAGE.TXT',
openwrite(batFle,ADDINCL.BAT"),
writedevice(batFiie),

writedevice(varFile),
file consult("exo.txt"),
build depend lists,
build-cornbined-depend_ lists,

mergel ists,
trace (off),

write("I\n\nMerqed I~sts of dependen~cies:"),

write-combined--depend~1ists,

I
62 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

writedevice (batFile), I
write(")b\n)\n"),
closefile (batFile),
closefile(varFile).

goal
go ().

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I

5. Application Software 63

5. Application Software

During the past contract year, most of the new system software and utilities have been developed
to support current application software, primarily EXOSIM 1.0 and EXOSIM 2.0. This chapter
describes the EXOSIM activity, as well as some preliminary work with LEAP.

5.1. EXOSIM

EXOSIM is the culmination of a series of exoatmospheric simulations, as shown in Figure 5.1.
In this section we will provide a brief overview of the activity which has led up to the current
project in which we are attempting to fully parallelize EXOSIM.

1
64 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1 I
ERIS Baseline Specifications - LMSC 3
KWEST Simulation - BDM

ACSL/FORTRAN

KEERIS Simulation - CRC (10/88-2/89)
Boost-phase only
ACSL/FORTRAN I

EXOSIM Version 1.0 Simulation - CRC (3/89-6/89)
Post-boost, midcourse, KV phases modeled 3
AM-FORTRAN
BDM staring FPA seeker

EXOSIM Version 2.0 Simulation - CRC (7/89-10/89)
Enhanced seeker, IMU
SPIOP algorithms added
Modifications to midcourse guidance and attitude control
All-FORTRAN

Unclassified EXOSIM - Dynetics (1/90-5/90) I
Based on Version 1.0
First- and second-stage boost only
Time-driven, not event-driven
Commented for parallel partitioning (up to five processors)

Parallel EXOSIM 1.0 - Georgia Tech (3/90-present) m

Based on Unclassified EXOSIM
Boost-phase only
Partitioned for up to 27 processors
Ported to high-speed processors
Demonstrated real-time performance
Subsequently used for Ada conversion and benchmarks

Parallel EXOSIM 2.0 - Georgia Tech (10/90-present)
Contains classified data and classified -'ibroutines 3
Converted from event-driven to time-driven
Eliminated all non-portable features
Midcourse/terminal phase partitioned for 13 processors and

demonstrnted running in real time
Comprehensive end-to-end version partitioned for 19 processors and

being ported to FPP/FPX processors
Derivative of end-to-end version used to demonstrate real-time boost-

phase only operation

i
Figure 5.1: Evolution of EXOSIM

I

5. Application Software 65

5.1.1. EXOSIM 1.0

One of the earlier subcontractors for this work (Dynetics) modified Version 1.0 of EXOSIM,
changing it from an event-driven structure to a time-driven structure. At the same time, it was
made into an unclassified version by replacing the data set and changing two routines. This
modified version of EXOSIM was first implemented at DETL and was described in the annual
report for this task in FY 1990. Briefly, we generated a set of guidelines for partitioning
FORTRAN code on the PFP and described a means of testing the partitions on a single-processor
system. Following these guidelines, Dynetics first produced a first-stage boost version of the
modified EXOSIM, partitioned for four processors. This program is called BOOSTI. They then
produced a first/second-stage boost version (BOOST2), partitioned for five processors. Both of
these programs ran correctly on the PFP, requiring only a simple procedure of splitting up the
main program along documented partitions and adding the appropriate commur.icatien
instructions (which is an automated process).

At this time last year (August 1990), we had a 27-processor version of EXOSIM which was
essentially a baseline version for the real-time version to be written for the FPPs. This version
was modified slightly, removing all but one COMMON block. A version suitable for the Sun-
hosted PFP was then developed in several stages. First, in order to reduce the required number
of processors without impacting performance, the three center-of-gravity (COG) modules and the
three moment-of-inertia modules (MOI) were combined into a single COG module and a single
MOI module. Then, in order to accomodate the limited data memory of the PFP, the BAUTO
module was split into three modules. This resulted in a 25-processor version.

Since the FPP development relied on the conversion of FORTRAN programs to C, we verified
the operation of the FORTRAN-to-C translator. This was accomplished by translating both the
single-processor and 25-processor versions of EXOSIM. The resulting C code for the single-
processor version was compiled and executed on three machines: the PFP host (running RMX
H), a MicroVAX (running Ultrix), and a Sun 4 (running SunOS/Unix). The results were as
essentially the same on each system, verifying the conversion performance. The 25-processor C
version was tested by using the standard C compilers on the RMX II host. The resulting object
code was loaded on the 386 processors in the PFP, and the simulation ran correctly. The single-
processor C code is much too large to run on a single FPP, but the 25-processor C code was
given to the FPP software development group so that they could test their single-precision and
double-precision compilers.

One additional processor was added to the partitioning, creating a 26-processor version that will
henceforth be described as FPP-BOOST2. This program was modified 16 more times during an
iterative process of developing FORTRAN code on the PFP, verifying correct operation, porting
to C on the FPP PFP, and identifying necessary changes (in order to get it to operate on the

I
66 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I

FPP's). By always making the changes in the FORTRAN version, we guaranteed that operation 3
of the baseline version is tracked. The FORTRAN code was transferred to a Sun machine, where
the FORTRAN-to-C conversion program resides. After the C code was generated, it was
transferred back to the RMX-based PFP host and run on the PFP in order to make certain that no
errors were introduced during the translation. At this point, we had a portable C version, suitable
for the FPPs, so the code was transferred to the Sun host. Since the FPP linker does not support
the concept of libraries, all dependencies were explicitly identified. This was done by processing
the map files created by the RMXII binder program, which is equivalent to a linker. The map
files are run through an "awk" filter, generating a makefile which is ready for execution on the 3
Sun. The process is described in Figure 5.2.

386PFP FORTRAN > SUN od > 386mPcoeF ls

cod code f86PFP

Figure 5.2: Process of porting Parallel EXOSIM 1.0 to a PFP with FPP boards.

In order to assist the FPP group in debugging their code, a data file was created of all of the 5
crossbar communication in a successful run on the RMX-based PFP. To some extent, this data
can be used to verify the operation of individual FPPs in the Sun-hosted PFP. 1

DETL has continued to use EXOSIM 1.0 as a benchmark and as a means of beginning the
transition to Ada. As an exercise in the practical application of Ada to parallel simulations, the
FORTRAN code was converted to Ada manually. An Ada-to-C translator was used to generate I
code which could be compiled for the 80386 processors and FPPs.

5.1.2. EXOSIM 2.0 1
EXOSIM 2.0 has been transferred, in both classified and unclassified versions, to the PFP host,
running under RMX II. The unclassified version is simply a sanitized version of the classified
version, with no attempt to make substitutions for the classified code and data. Because of this,
the unclassified version will not run and is suitable only for compatibility testing (new
compilers). Extensive effort was required to make the single-processor version portable among U
several systems, including VAX VMS, VAX Ultrix, Intel RMX II, and (later) the Inmos
Transputer development system. Most of the portability issues rose from using VAX extensions

to FORTRAN, rather than adhering strictly to the ANSI FORTRAN-77 specification.

Several non-standard FORTRAN statements were converted. The most significant of these

incompatibilities were the NAMELIST statements, now converted to simple assiznment
statements through an automated process. We have also changed local COMMON blocks to U

I

5. Application Software 67

local static variables (using SAVE statements) and global COMMON blocks to BLOCKDATA
routines. Also, several built-in functions were changed from VAX naming conventions to
standard FORTRAN-77 names. At the same time, it was necessary to implement certain
functions or subroutines which were not available on the RMX II system, including RANO,
DREALO, and DIMAGO.

These changes resulted in classified and unclassified versions which compiled and linked
correctly under RMX II. The classified version runs much as it does on the MicroVAX, but
deviations are noticed, beginning around the second-stage separation. We had to make some
corrections to variables which were not initialized correctly. As a validity check for all of the
converted code, we ported it back to the MicroVAX, where it ran correctly.

An additional version of the classified code was also created on the PFP host. In this version, all
I/O is done with standard PFP Host I/O routines, enabling the code to be run on a single target
processor within the PFP. This program behaves just like the host version, as would be
expected. This target version was eventually used as the starting point for partitioning code
among multiple processors.

The hardware I/O structure of the FPP board was not compatible with the original Host I/O
routines (designed for 286 and 386 processor boards). Consequently, they were rewritten in a
manner which allows them to be used with either FPPs or 286/386 boards. This facilitated the
porting of code between these different target processors.

Seeker model 3 was not required for the PFP version of EXOSIM2. Consequently, we
commented out of the mainline the significant subroutines and variables used by Seeker model 3.
After these and other minor changes to remove unnecessary variables, the program size dropped
to less than 1MB. The program ran on the PFP to completion but failed to hit the target in the
same manner as the host program had earlier. Some errors were identifiied in NAMELIST
assignments, and the corrected version was compiled for both the VMS and RMX systems. The
simulation resulted in a similar miss distance for both versions. The altitude and timing of some
events were not identical but the simulation seemed to perform correctly. These minor
differences have been attributed to the cumulative effects of slight differences in precision
between systems, and perhaps to different ordering of operations (which is internal to each
compiler).

We modified and recompiled the iRMXII host version of EXOSIM2 to support file 6 (terminal
output) and file 51 (file output). The simulation ran to completion and produced the correct
answers.

The changes made to date to EXOSIM V2.0 were so numerous that we needed a more exact way

to track the changes. We started with the original version (vOO) from the VMS system and redid
all the changes creating I new versions (vOl thru v 11) of EXOSIM V2.0. Each version fixes

one or more related problems to the program. All of these versions are strictly for a single-
processor system.

I
68 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

In order to prevent each partition from having to run a large initialization program (DATIN), we U
converted the appropriate initializations to DATA statements. We then needed to settle on a
convenient grouping of these statements into files which can be selectively included with various
routines. (If we put all of the DATA statements with each routine, we would have the same
problem we started with -- large memory requirements -- which would cause serious problems
when we eventually use the FPP.) We has wrote a PROLOG program which reads in all variable
dependencies, identifies shared dependencies (variables which are used by more than one file),
and combines identical dependencies (producing groups of variables which are used by exactly
the same file or group of files). By running this program on the EXOSIM dependencies, we were
able to determine if there is a need to combine even more dependencies (based on subsets, as
opposed to simply identical sets).

The PROLOG program "varusage" was run on the actual data dependencies of EXOSIM 2.0.
This identified 83 distinct sets of pre-initialized variables which are used by one or more
routines. The number of variables in each set ranged from I to 48 (some of these are actually
arrays), and some sets are used in as many as 8 files. These sets of dependencies were reduced
from an original list of over 560 single dependencies. We then looked at the possibilities of
merging variable sets when one set is a "close" superset of another. By "close" we mean that the I
larger set cannot have an excessive number of variables which are not in the smaller set, since
each extra variable is needlessly initialized in one or more routines. When we defined "close" as
being only one extra variable, "varusage" reduced the 83 sets down to 66. Additional relaxation I
of the number of extra variables resulted in much smaller benefits, down to about 58 sets when
four extra variables were allowed. Although the reduction from 83 to 66 is significant, we opted
to stay with the 83 sets, knowing that the code would be as efficient as possible.

A side effect of the work on the equivalence grouping pointed out two program bugs that were in

the original FORTRAN from Coleman. The final result is slightly different that the original with
a better miss distance. The next version (v15) incorporated the changes in data initialization.
Include statements (referencing files with DATA statements) were inserted in place of the
equivalences and call to DATIN. We found that this version did not run correctly because a few
variables had been modined oy scaling factors in DATIN, and some variables were being
initialized outside of NAMELISTs which were EQUIVALENCEd -- the so-called "DYNAM" 3
variables. Both of these issues were corrected, and the program then ran without any DATIN
calls (using included files of DATA statements instead). We also performed an analysis of the
usage of each of the NAMELIST variables to see how many times each was referenced, if at all. I
We then passed this information to the PROLOG "varusage" program, which was modified to

throw out the unused variables before combining them into subsets. This reduced the number of
include files down to 70 (from 83). This version (v18 for the host, v18.pfp for a single target I
processor) became the basis for our partitioning efforts.

We ran our utility program to check for variables which were referenced before they were defined I
and found over thirty such variables. These were then initialized to zero, which was the apparent
intent of the original programmers, in order to make the code more portable. 3

I
I

5. Application Software 69

This same version was converted to an unclassified foim by removing all data, as well as the
classified routines. It was then modified to make it suitable for the FORTRAN-to-C translator
and thus the FPP compiler. In summary, the v18 version of EXOSIM2 was tested and validated
on the Ultrix machine, the iRMXII host, and a PFP 386 processor. We translated the unclassified
FORTRAN (vl8) into C and then compiled all but the mainline. It was then clear, from the
code and data sizes, that getting the simulation to fit on the FPP/FPX would be a major problem
unless we converted much of it to single precision.

Later, the single-processor version was benchmarked on four processors: an Intel 286 (on an 8
MHz 286/12 board), an Intel 386 (on a 20 MHz 386/12 board), an Inmos T800 (using the 20
MHz SSE host), and a DEC MicroVAX II. The 386 and the T800 were almost twice as fast as
the MicroVAX and over four times faster than the 286. Code sizes were similar, with the T800
being slightly larger than the rest, and simulation results (as measured by miss distance) were
similar, but not identical, as has been noted before.

After some attempts at running a two-partition version of v 18, Richard Pitts and Philip Bingham
began to concentrate on partitioning only the midcourse/terminal portion of EXOSIM. This post-
boost version can only start from a specific set of post-boost data values. Steve Wachtel and
Tom Collins continued to partition an end-to-end simulation.

The general strategy for partitioning EXOSIM is given in Figure 5.3. This illustrates the major
functional elements of the simulation, which are capable of running in parallel most of the time.
At a higher level, this couid be viewed aF three main functional elements: the environment, the
target, and the interceptor, where the interceptor is composed of four sub-blocks. These six
blocks are further subdivided to extract enough parallelism for the system to run in real time.

Sensors
Interceptor Onboardl
dynamics < - GN&C

Thrusters

Figure 5.3: General partitioning strategy for EXOSIM 2.0

70 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

The following sections describe the various partitioning stages of the end-to-end version of
EXOSIM 2.0, beginning with the single-processor version SSV 18.. Each step resulted in a new
version, named SSVxx.yyz, where "xx" is the major version number, yy is the number of
processors (partitions), and z is a letter to distinguish between multiple versions using the same l
number of processors, but differing in some other aspect..

5.1.2.1. SSV19.3 3
The two-partition version developed by Richard Pitts and Philip Bingham was investigated, but
we learned that it would not run to completion even if the partitions were run serially.
Consequently, we started over from the single-processor (v8) version, keeping the partitioned
code as close as possible to the original. It made the most sense for the initial split to be
between the "truth" model (modelling the physical dynamics of the vehicle and target) and
everything else (basically the sensor processing, guidance, navigation, and control).

Our partitioning was along these lines, with system dynamics ("truth states") on one processor i
and sensors, guidance, navigation, and control on the other. We also split out the output function
into a third partition. The main difference between this partition and the earlier version was that
we did not split up VCSTHR and ACSTHR, and we did not alter FRACS or FRCTHR. We
examined the usage of the variables which were used in both partitions (this is what made Philip
Bingham decide to alter his routines), and we determined that most of these variables are really 3
controlled by the GN&C partition (as they should be). The dynamics partition simply modifies
some of the variables for local use. A less significant difference was that we placed the GYRO
and ACCEL routines in the GN&C partition. These could easily go either way, since sensors can i
just as easily be considered as part of the dynamics or of the GN&C system, but the structure of
the single-processor version favors the chosen placement of these routines.

In many of our earlier simulations, we scheduled all interprocessor communication either at the
beginning or the end of the integration timestep. This is consistent with a programming model
where only state variables (or only derivatives of state variables) must be communicated. When I
there are many intermediate variables calculated by algebraic means or by tables, as in the case of
EXOSIM, this strategy results in the communcation of variables at inappropriate times,
introducing artificial delays and requiring false initialization. This had been attempted by Pitts
and Bingham and was probably the main reason that they were unable to get two partitions
running in parallel. We began adhering strictly to sending values at the correct times, even
though this resulted in the communications being spread throughout the code. The only real
problem with this is that it prevented us from using the utility programs which automatically
generated the sends and receives, but it provided greater promise of speedup while still retaining i
the fidelity of the original single-processor version.

I
I
I
I

5. Application Software 71

This new three-processor partition was designated as "SSV19.3". After creating all required
communication calls, we compiled and ran this version. It ran to completion with no errors.
SSV19.3 runs about 15% faster than its predccessor, due probably to a better load balance
(movement of GYRO and ACCEL) and to the addition of the small third partition.

5.1.2.2. SSV19.5

We then developed a five-partition version. During this same period, we began developing some
additional tools to aid in the automatic generation of crossbar code, which we tried on
intermediate versions of EXOSIM. With EXOSIM now divided into several partitions of clear
physical significance (missile states, target/relative states, IMU, GN&C, and output), we began
to concentrate on speedup. Staying with five-processor versions, we first made good use of the
first-order (Euler) estimates of the state variables which are calculated at the beginning of each
missile state update section. These were sent instead of the values calculated at the end of the
loop. The only difference here is the degree of approximation (Euler vs. trapezoidal) and the
derivative estimates. This version ran fine, actually improving on the miss distance, which by

blk00

MISSIL, MASSPR, BTHRST,
NCU, FRCTHR, VCSTHR,
ACSTHR, ATMOS, AERO,
TARGET, RELAT

blk02

blk01

GYRO, ACCEL, IMUPRO,
NAVIG, OBTARG, ESTREL,
CORVEL, BSTEER, BGUID,
MCGUID, SEEKER, SSPLAG,
KALMAN, BAUTO, FRACS,
MCAUTO, KVAUTO,
VCSLOG, RESTHR

Figure 5.4: 3-partition version of EXOSIM 2.0

I
72 Annual Report: Digital Emulation Technology Lvboratory Volume 1, Part I

itself is only a rough indication of performance. There was about a 10% speedup due to this I
change.

We then turned to what we consider to be an error in EXOSIM. It does not make sense to I
perform .any type of integration at the beginning of the lonp, in either a serial or parallel version.
The present-state information should be adequate for the calculation of all derived variables,

including state derivatives. We deleted the first-order estimates and began sending the most-
recently-calculated state variables at the beginning of each missile state update. This version is

about 30% faster than the previous version, at least during first-stage boost, and miss distance
was again reduced (by more than half). This improvement could be due to the fact that the
GN&C routines are now receiving the present states (as they should), rather than some
extrapolated next-states.

I
I
I
I
I
I
I
I
I
I
I
I
I

5. Application Software 73

As an aside, we uncovered three more errors in the original EXOSIM code. Three variables
(TL2, TONAV, and TGIL) are used in the mainline (either as direct assignments or formal
parameters) and are also used within COMMON blocks within subroutines. This sort of hidden
interaction was supposedly eliminated in EXOSIM 2.0.

I
I bIkOO

MISSIL, MASSPR, BTHRST,
NCU, FRCTHR, VCSTHR,
ACSTHR, ATMOS, AERO

II bbk04

TARGET, RELAT1

O TU

blk03

UPI
GYRO, ACCEL,
IMUPRO, NAVIG

bik01

OBTARG, ESTREL,

CORVEL, BSTEER, BGUID,
MCGUID, SEEKER, .3SPLAG,
KALMAN, BAUTO, FRACS,
MCAUTO, KVAUTO,
VCSLOG, RESTHR

1 Figure 5.5: 5-parlition %'ersion of EX)SINI 2.0

I
74 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I

5.1.2.3. SSV19.6

We began to focus on the second-stage boost, isolating the computational slowdown to BAUTO.

As a rough estimate, BAUTO was about 4-5 times slower than any other candidate partition, and I
it showed little promise for being split up. (Actually, it made sense for it to exist in the same
partition(s) as MCAUTO and KVAUTO, since these routines substitute for each other as time
passes.) The problems do not arise from table lookups, as may have been a problem with
EXOSIM 1.0, but are due to the calculation of optimal gains, which requires that a discrete
model of the missile dynamics be derived, followed by computation of the eigenvalues and
eigenvectors (with a great deal of matrix manipulation along the way). Also at this time, we
began to perform an extensive timing analysis of the single-processor version.

We then split out a single autopilot partition (for all three autopilot routines), resulting in a six- I
processor version whose output is identical to the five-processor version, since no reordering of
computation had taken place. We had originally planned to improve the speed of BAUTO and
perhaps reorder some communications, but as we looked at the optimal gain calculations in
BAUTO, we began to doubt their feasibility, not only for real-time simulation, but also for flight.
In addition to taking a very long time on the average, there is the possibility that in isolated
cases, the routines may not arrive at a solution at all. Perhaps we could spend some time trying
to improve the control algorithms, but we deferred this until we have the rest of the simulation
running real-time. For this reason, we took a shortcut around the BAUTO problem. Noting that n
the variation of the plant model (and therefore the optimal gains) depends mostly on atmospheric
properties and the changing missile mass, we attempted to fit curves to each of the three optimal
gains as a function of altitude. Using Mathematica and Excel, we arrived at two second-order I
polynomials and an eyponential/second-order polynomial for the three gains. I

I
I
I
I
I
I
I
I

5. Application Software 75

The gains could then be computed very quickly, and the missile performance was nearly identical
as far as miss distance was concerned. (The second-stage boost ended at slightly different spatial
coordinates, but not enough to make any significant difference in the remainder of the flight.)
This somewhat alleviated the need to reorder communications or "cheat" in any way to
accomodate BAUTO, since the critical path shifted to other routines.

We began to use Gannt charts from Microsoft Project by manually inserting timing routines in
the code, then entering the results into Project manually. We then began to automate this process
so that we could analyze the critical path with each successive partition. We determined that it
was possible to use the file import features built into Project. We needed a preprocessor that

bIkOO

MISSIL, MASSPR, BTHRST,
NCU, FRCTHR, VCSTHR,
ACSTHR, ATMOS, AERO

bIk04

TARGET, RELAT bIk02

bIk03

GYRO, ACCEL,

IMUPRO, NAVIG

blk01 bIk05

BAUTO,

OBTARG, ESTREL, CORVEL, FRACS,
BSTEER, BGUID, MCGUID, MCAUTO,
SEEKER, SSPLAG, KALMAN, KVAUTO,
RESTHR VCSLOG

Figure 5.6: 6-partition version of EXOSIM 2.0

I
76 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

analyzed the FORTRAN blocks, inserted timing routines, and kept track of all computation and I
communication segments, as well as a postprocessor that merged the PFP output with the
dependency information. All computation blocks and send routines are considered as distinct
events, while receives show up as dependencies (i.e., a computation cannot take place until a
receive takes place). We were able to successfully generate the Project information for
SSV19.6, but we continued to refine the format and methodology as we proceeded to partition
EXOSIM. Some of the timing charts are presented later, beginning with version SSV20.10A.

5.1.2.4. SSV19.7 and SSV19.8

Our seventh block was created by pulling out the atmosphere-related calculations, including
ATMOS, AERO, and the computation of altitude and related coordinates. Our eighth block was

created by pulling out all of the thrusters (for all phases of flight). Up to this point we were still
able to run all routines in the correct order while achieving some significant overlap, but we felt
that we should begin to use estimated values for slowly-varying variables when it allowed for
more parallelism. We made another eight-processor version which used approximate values for
QA, MACH, and PRESS and found no significant change in the output, but this allowed the
thruster models to run sooner. We made gradual timing improvements and broke the 10-times-
real-time milestone, at least for first-stage boost (where our most recent efforts had focused).

I
I
I
I
I
I
I
U
I
I
I

5. Application Software 77

5.1.2.5. SSV20.8

We developed a new major versi3n, SSV20.8, an eight-processor version which had most
COMMON blocks removed. We experimented with different levels of optimization and the use
of 387 instructions and found that we were able to use the latest Intel FORTRAN compiler at its
highest level of optimization, but we are only able to reliably use the 287 floating-point
instructions (not the faster 387 instructions). We then converted most integer calculations to
two-byte integers, which saved some time without adding another partition. These and other
related changes resulted in versions SSV20.8a, SSV20.8b, SSV20.8c, and SSV20.8d.

blk06

blk00 AERO
MISSIL,

M ASSPRbk0

BTHRST, NCU,
FRCTHR, VCSTHR,

b~k4 ACSTHR

TARGET, RELAT b

b~k03
O UTPUT

GYRO, ACCEL, I
IMUPRO. NAVIG

blk01 blk05

BAUTO,
OBTARG, ESTREL, CORVEL, FRACS.
BSTEER, BGUID, MCGUID, MCAUTO,
SEEKER, SSPLAG, KALMAN, KVAUTO.
RESTHR VCSLOG

Figure 5.7: 8-partition version of EXOSINI 2.0

I
78 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

5.1.2.6. SSV20.9

We created a nine-processor version, SSV20.9a, by splitting MISSIL into two routines, one for
the translational dynamics and one for the rotational dynamics. This worked very well, shifting
about 40% of the MISSIL calculations out of the critical path. We continued to use Microsoft
Project for the critical path analysis and made some refinements to the dependency information.

bIk08 blk06

MISSILR
ATMOS,511J

I
MISSILT, bIk07 I

MSSPRT BTHRST,
NCU,

FRCTHR, VCSTHR,
ACSTHRblk04 3

TARGET, RELATI

bIk02

bIkO3 [UTP]T
GYRO, ACCEL,SIMUPRO, NAVIG

bIk05
,h0

BAUTO,

OBTARG, ESTREL, CORVEL, FRACS.
BSTEER, BGUID, MCGUID, MCAUTO,SEEKER, SSPLAG, KALMAN, KVAUTO.

RESTHR VCSLOG

Figure 5.8: 9-partition version of EXOSIM 2.0

I

EXOSI M 2.0 V20.I1OA (Stage 1)

Name
1 project exosim

1.1 program bIkOO.-

1. 1.13 computation ?

1.1.15 computation)

1.1.11 computation masspr

1.1.23 computation integ

1.1.24 computation integi,integ,misstt_________

1. 1.25 computation ?

1.2 program bIkOl

1.2.1 computation mcguid,bguid,bsteertr-

1,2.12 computation kalman~ssptag~seek g

1.2-24 computation ?

1.3 program blk02

1.3.1 computation outmes

1.4 program blkO3

1.4.1 computation gyro -1

1.4.2 computation navgimuproacce

1.4.12 computation ? a

1.5 program blkO4

1.5.1 computation target

1 .5.5 computation relat

1.5. 1 2 oomputation ?

1.6 program blkOS -

1.6.1 computation isthr~vcsiog,kvaulo,t

1.6.23 computation ? C

1. 7 program bfkO6

1.7.1 computation mink
.

1.7.3 computationI

1.7 5 cumputation atmos -J

1. 7 7 computation aero-

1 7 16 computation I

1.8 program blk07ii *

18B 1 computation bthrst

1. 89 computation trcthrncu

1.8.17 computation vcsthr

1 8 25 computation integ

1.8.26 computation' I

1. gprogram btkO8

19 98 computation integmissir

tO1 program blkO9 S

1. 10,.1 computation acsthr

t. 10 10 computation 7
__

Figure 5.9

I
80 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

5.1.2.7. SSV20.10 I
We then created a ten-processor version, SSV20.10a, by separating VCSTHR and ACSTHR.

These have no cross-dependencies, and VCSTHR was thus removed from the critical path. We
also improved the efficiency of MMK by rewriting the ROTMX subroutine.

The timing of this version is illustrated in Figure 5.9. This chart (and all of the ones which will I
follow) shows the timing of a single integration step averaged over a particular phase of flight.
This particular timing chart is for stage I (boost phase), so it does not clearly show the
motivation for the tenth partition, since both ACSTHR and VCSTHR are not very time-
consuming during this portion of flight. It does clearly show the effects of many of the earlier
partitions, including the ninth partition, in which the rotational missile states (MISSLR) were
split from the translational states (MISSLT). Note that MISSLR and MISSLT run concurrently.
The critical path in this timing chart is shown as a solid bar, containing GYRO, MMK, ATMOS,
BTHRST, FRCTHR, NCU, VCSTHR, INTEG, AERO, MISSILT, and the autopilot routines.
This indicates what areas can be targeted in subsequent partitioning, and we chose to work on the
long ATMOS computation.

I
I
I
I
I
!
I
I
I
I
I

5. Application Software 81

5.1.2.8. SSV20.11

We created an eleven-processor version by splitting ATMOS into two routines, one which
performs four table lookups and one which performs just two lookups, followed by some
extensive computation. This was done without changing the results in any way, since the new
partition was truly capable of running concurrently. The timing of this version is shown in

blkO8 bIkO6

MISSILR ATMOS,

b~kO AERO I
blk00

MASSPR

BTHRST, NCU,
FRCTHR,VCSTHR 1

bIkO4

t~O
TARGET, RELAT ACSTHR

blk03

bIkO2
GYRO, ACCEL, I
IMUPRO, NAVIG OUTPUT

blk01 blkO5

BAUTO,
OBTARG, ESTREL, CORVEL, FRACS.
BSTEER, BGUID, MCGUID, MCAUTO,
SEEKER, SSPLAG, KALMAN, KVAUTO.
RESTHR VCSLOG

Figure 5.10: 10-partition version of EXOSIM 2.0

I
82 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

Figure 5.12. Again, this timing is for the first stage of flight, which was our primary focus at the I
time, although we analyzed each of the three major stages (boost, midcourse, and terminal).
Note that the ATMOS 1 computation begins at the same time as ATMOS2 and that the relative
length of ATMOS is thus reduced from the previous version.

This and all of the remaining timing diagrams presented here include duration figures. The basic
unit is abbreviated "m" for minute, but this is a misleading carryover from the project-planning
software, which provides for no smaller units of time. Actually, an "m" is a tick of our 286/12
or 386/12 boards' onboard timers, and should be thought of simply as an indication of relative 3
time. The timing is described hierarchically, with thinner bars which span the various
computations required to implement each partition, or "program." These thinner bars have
durations given in elapsed minutes, or "em," which are really no different than regular "minutes"
(timer ticks), except that they include idle time during which a program is waiting for data. Time
is also allowed for communication of values, but this is not shown on the timing charts, since it
makes them very large and does not provide much useful information. Some of the apparent idle I
time, however, is actually due to communication which has been filtered out of the charts. I

I
I
I
I
1
I

I

I
I
I

5. Application Software 83

bIkO8
b~k06bIklO

-- j ER ATMOS

bIkOO

MISSILTbIkO7

MASSPR[BTHIRST NCU,
FRCTHLR, VCSTHR

bIkO4

TARGET, RELAT bIkO9

b~k03bIkO2

GYRO, ACCEL,
IMUPRO, NAVIG OUjTU

b~k01bIkO5

BAUTO,
OBTARG, ESTREL, CORVEL, FRACS.
BSTEER, BGUID, MOGUID, MCAUTO,
SEEKER, SSPLAG, KALMAN, KVAUTO.
RESTHR VOSLOG

Figure 5.11: 11-partition version of EXOSIM 2.0

EXOSIM 2.0 V20 1 IA (Stabge 1)

Namle Duralton ___ __ ______-_______________

1 piqs =ow 6468

1.1 mgram bOM 6456.0y

1.1. 13 WPAabon 87M IU
1. 1 t 5 .mq.o.Ab. 87M

1.1.17 ompiAasioe miasspr 4m

1.1.2 lamptwir4 41I5(

1.1.24 wmpt1uew mag.regjnteg 157o _____________

1. 125 coffoAawn 49M

1.2pm92inb.0 92

1.2.1 COPain bau7rVsrl=~.bsl9.bgL 322m___

1-112~~~~ I~pmnsowpakun O
1.24 mn9tAaon 56MI

1.3pmnm bkO2 1929M-

1.3.1 coNvton outmhs 191m _ __ _I

1.4.1mmplaongyro 231 Sm

1L4.2 mYn~piog &cWmupwig 52m ____

1.4.12 WMW4Aio 49MI

1.5 pmgamI bm0 1030M1

I.S.I mamwg 487m

I5. 5SnpMawn 2 66MI

I.$ pmgii AM 43fm

UI LIp~ bwoA.= A .CaAO cv.AavQ 241 m

1 71 mwn m 9v~ 61 m3

I, 7.3 imputmsi 459m

1. 7L~ 6 wp in 28
1.7.15awrouta I a __

I~ If 1ma bU I

1.$ 17 =mpamtn vmam 41

6.825 omoutwwtog ~ ~ 21 Om 1 1
1.926 Co~n 4gMIa

13q pmgrn b" r-R-r I

1.. =m9Imi11 Im'w" 10421 ___ L....... ___

I 10. 1pAogm No * 41, 1n
1I.10ump Compuo11 4gm

1.113mwgiblG 507"i- -

Figure 5. 12 i

5. Application Software 85

5.1.2.9. SSV20.12

GYRO and ACCEL were split into separate partitions to make the twelve-processor version.
Although these routines were not part of the critical path during stage 1 (because of the
dominance of atmospheric considerations), they become problematic later in flight.

We continued to use our critical path analysis tools based on Microsoft Project. We began using
idealized communication times, rather than measured times, since it should be possible to reorder
the communication to achieve better-than-measured times. We delayed this manual reordering
until we had a version which theoretically could run in real time. A timing chart for stage 1
(boost-phase) is shown as Figure 5.14. The parallel operation of ACCEL and GYRO is evident
in the timing diagram, allowing IMUPRO and NAVIG to begin earlier.

86 Annual Report: Digital Emulation Technology Laborarory Vojome 1, Part 1

b~k0I
b Ik O 8 L b I k 6 b I k 1 O

~LR ATMOS2,iA
AE RO IAMS

MISSZ 7], bIkO7U
MASSPR

BTHRST, NCU,

FRCTHR, VCSTHR

bb~kO9

TARGET, 3EA ~ 0

b Ik02

bIkO3 bk

IMUPROI

b~k01bIkO5

BAUTO,
OBTARG, ESTREL, CORVEL, F R ACS
BSTEER, BGUID, MCGUID, MCAUTO,5
SEEKER, SSPLAG, KALMAN, KVAUTO,
RESTHR VOSLOG

Figure 5.13: 12-partition version of EXOSEI 2.0

EXOSIM 2 0 V20 I 2A (Stage 1)

I I progamMOO 6457am -____

1 3 co,,,puawmn 87m -

IS oomp-3!rn 87m C

1 17 copuationmassp, 946m~

1 23 compuAalon traeg 415m,

1? 4 cmtnhon msit'meg. vs9.i 11,70m

1 2 orogam Met0 Warn~

1 ooloobgmasra1ev 235,,__

12 2 c i1~a1 9,,eer.%ox!,mcud 1 22m

1 213 conpLflal~m on 4 seeefspiaghkalan 48m,

2 25 c1'5Uioalo 56m

1 3prgrambiAN02192m ,,

1I 3 1 computatio tms 191m

1 4programbAMO 2367... ___

Il A I ODaT~On gyro 2306m I_____
1,43 computation 49m

I 5 program1 bfl.O4 100M

1 51 computaion, target 87m

1 5 5 mplaion4 I26NM

15, 12 cmputation 49m

I 6 1 computatio bauIo,fracs.mcauto,vaio, 241m

16 21 ODMPl*Mai S" :3

1 7pogam bck6 464am -

7 1 cmpuaion mmk 962M

1 73 100901lw ts~m

1 7 5 computaton 1 mos2 191dm mm

I 76compufioerv 1228m
1 715 comp.nton Agm___I____

1 8 25cmputtion img 219M _

1 926 computation 49M1 9 program1NOR 5866a. -

19 8cmpuaionme"Wirimeg dI

I 10 program M09 mom..

1 101 copuation amdr 41ma

I 10 10computaion 49m,

1l 910pogam bale0 5079m

lII II computation smosI 4&,

II i S cmputation 49m

1 12program bl411 3026am -

1 21Omtld c 81 7mJ___________-

I Z2 co~mpuainnp.navg 1743m. ___ ___

I lI 12 computation 4gm 0 -____ _________

Figure 5.14

5. Application Software 89

bIkO8
bIkO6 bIklO

MIILR7 , ATM

bii77 bkO

MASSPRI
BTHRST, NCU,
FRCTHR, VCSTHR

bIkO4

TAGT, RELAT ~k

bIkQ3 bll1bIkO2

GYROACCEL,I
IMUPRO UTU
NAVIG

bIk0l

CORVEL, BSTEER, BOUID, bIkO5
MOGUID, SEEKER, SSPLAG,
RESTHR IBAUTO,

I FRACS,
MCAUTO,
KVAUTO,

b~k1VOSLOG

OBTARO, ESTREL,
KALMAN I

Figure 5.15: 13-partition version of EXOSIM 2.0

EXOSIM 2 0 V20 13A ISlago 1

I Iotgm Nbf.C. 6456.,,-M

I I copula!*n 0 M
,I

I I IS Omp1ai. 97M

12 compnulaton im~eg 41 Sm

12 4
WgWMr. ms5J.gmegc 1570g i

11 25 compLawon 45.,

12.1 ~Pfl~l~o ~72,.M
12 2 2wmwxao 6brwbpw l2le.

I 2. ~mulalo .49M

13 3Pmow bn1l.2 192ohm j
13 1 owpulaflonouStaesIl

1 .,5u~alo 40,,

15 Pmgram Al04 1030.,.
15, 1 i'pMUon targal 487, I
5 5 copadln r 266,
5 12 otmputaftn 49M.1

I' Spto'.. 60.05 4280111

6 1 .aL~aion bauo.fraa, caLo~kvMA0,' 241m

623 cmu k0n 58=

llpogramb0.05 4683., & -'

1 7 1 COMMu~n mmk 9g.,.
1I 7.3 wptallo. 49,. i

1 75 Cmp.ation amos2 iol4m _____ _I

1 76 omW;pvwn &Or 1227m

17 15 cOmpion 42M1

8 pmg'w blk07 3775.,,

18 1 ODWIon b1IV. Slm

0,89 a~4Um uml ore0.r 122., _

18 17c 1db. lvothr 41"C=

8 825 cvrofw.~ ireg 219. __
1826 w..p.aib. 49M

1.9' computaton mwkimf~eg 1040,.

10 Pmvom N~b 3811sm-

-t.1. I cow lashr 41M,

1.11 61610bw 507.,. -

I1i1 SCoMV~ou'l 49M

1 12 prom .brl I 3025.m

II om17m -60cm 61 7m_

I I220"'..mm., onmUpo.nvjg 1743m -_________

1 IZ12w.'.pqadom' 4&m,

1 2 M l3r Mr'I2 842.,
I

1 13.1 oomp,lamo oblarg~oel~coI e 201 m

1 132 ODMguabo, M~g4 43m,

13 25 oomp.Aatto, 34,

Figure 5.161

5. Application Software 91

5.1.2.11. SSV20.14

The fourteen-processor version was created by separating AERO into its own partition. As seen
in Figure 5.18, this removed a substantial amount of computation from the critical path in the
"blk06" partition, reducing the total simulation time by almost 20%. As noted earlier, these are
still idealized times, based on actual compute times and theoretical communication times. We
were able to use the project-planner timing charts, however, to create optimal orderings of
communication for each stage of the flight. This information was used to generate
communication priorities that were fed into the crossbar/sequencer code generation utility
program. Wherever possible, the optimal ordering was made (if it did not result in an invalid
ordering on any single proce nr) W,. ':i1!lncd to make some changJ w ,

sends and receives in a later version in order to more closely match the optimal ordering, at least
for one phase of flight.

92 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

bIkO8 3ER

I . bIklO

bIkOO ATM 5
MISSILT, b~kO7
MSSPRT

MIASSPJRBTHRST, NCU,

b~k04
FRCTLHR, VCSTHRJ

TARGET, RELAT I~0

b~bkkO1

GYOIUPRO, OT

b~k0I
CORVEL, BSTEER, BGUID, bIkO5I
MCGUID, SEEKER, SSPLAG,

I FRACS,
MCAUTO,
KVAUTO,

bIk12 VOSLOG

OBTARG, ESTREL,I
KALMAN

Figure 5.17: 14-partition version of EXOSIM 2.01

PKOSIM 2 0 V20.14A (Stage 1)

I "W~ 4,041M 52234M _____________-

I I promI0&c 5223m. -- _________

1 113 cmTputallon SOIIm1

1 Is cmoutat~n Urn8 ,I

1 1 17 wrpAaommassp.r 94911

1 123 coputaOn I~q41

1, 124 axmyutlato nm., 1Ieg,oego 1543M1

1 125 cnuatio 4ft1

1 2pr~gyubrKOI 42

17 cmrputaion 7b"t

1 Z 5 wDMtimi' 491

13 pmgr2I bI02 I ram1

13.1 WMPLOMercomes Igmm

14 prnovrml bM3Mo

1 4 cmuioI am11

15pmr b0O4 19008M

15 1 cm"t trget 487m

I ss6oiputamn few m

1.512 mmo49

1.6 prmgrarn NO1 4""w

I $.1 cmpoalmon balA0.frammcallo.kmflo.vo 241m~

16 23 coputaton 5i

I I progrm Moll6 34

1.7.1 wImptsalon mmlk 061M

I. 73 omp00n 459M,

1.. 7S~nt inm,go$2 191011

S768 oompudlo 49M

t Ipogram b&07 3771n 0

182 owlion JI" 221 m

1.I 96oAaflon mlssbjreg 10421,

1.10 prqraI WOO0 307sm-

1.10,1 Coptto SCStr 41m 0

III pmogu. 0110 4119
1IA11 npoAo~lonamIo 44&ii

Itl 5 OMPutabi 49M,

1, 12 prng A0l I 3aw-

I. 12t I 6141,, oai

I. 1 2 ip o 01upronvi 174m ___

I tZf1omp~adiom 49M1

1 13 program 0411 2 Warn

1 131 emv.,ation O04aig.mtrsI,wI 2021m __I

1 13,2 OMOutIoI ICquid 43M ~
1 13 11 comationb stmoker~ssplag.kalman 48.1

1 13 25 mmtatoon "~M_ __

1 1 prarmOIO3 2411gm

1 141 OnMyUIMOn 3M 1241m1

I 14 10 cmpuaion 4211

Figure 5. 18

U
94 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

5.1.2.12. SSV2O.15I

The iifteen-processor version was created b ,plitting ACSTIIR ino two routirn.,. While the
previous split was mad.. to alleviate the critical path in boost-phase (the AERO partition), this
one was for the benefit of the midcourse/terminal phase (the ACSTHR partition). This sort of
partitioning is typical of the problems associated with an application whose structure changes
during a run - what benefits one phase of the run may not benefit another pnase. In order to
better illustrate the effect of this partitioning, timing charts for stage 3 (terminal phase) are
provided here for both before (14-processor) and after (15-processor). (The previous 14-
processor timing chart was for stage I only.) Figure 5 19 is the timing of the 14-processor
version , and Figure 5.20 is the timing of the 15-processor version. Note that the ACSTHR

computation falls out of the critical path completely as a result of this new parmtion. The total
simulation time seems to increase, but that is only the result of using a more conservative value
fur each of the individual communication times.

A timing chart of stage I of this partitioning is given in Figure 5.23. This provides a comparison
with the earlier charts, which were all for stage 1, as well as the charts which are to follow.

I
I
I
I
I
I
I
I
I
I
I

EXOSIM 2.0 V20 14A (Stage 3)

Name IDuratin_ __ ___ _ _ ___ _ _ _ _ __

lI pmedxom S819.k ___

IIs comptation : M~ _

1 23 Cmpuaion Im"e 41&1l

1,24 compuallo rnis0meg.Ieg 1553.

125 cmputatonl~ am

I 2.1 ompuation 73m

11 wwall4. w,,lwbguw 47.

125 Copuation 49m

1 3 prgam bfk2 192.n _

13.1 COPIIOn.4Utf 191m

1 nrrin M 2363..-

,41 Compuaton gyro 2302M_____

1.4 3 ooguaton am

1 5 praM WkO4 1027M,

15 1 computatin target 487m

1.5,5cmpulatinreW 263m

13.12cmpuat4i 49M

16 pmgvam b&5 31lm

I S.I compuionb bafio.ftm.ma~kva~fo,va 122m r=

168,23 copuation ~ 56M

1. 7 pno9w 156601~-

1 .7.3 comutatio 459,

1 73cmpaonr'm%2 41,

1.7 a oopuati 11 a

1.8 progrin W07 4344,,-

1.6.1 bibtA I al 1. Si

IlIS C1gbInoMICItr 53M 11

1.6.17 mmpWMW vathr 1666 ________

14625 computation In". Sim [a

l.6.20compuution 40m ___ ___a

1.9progamb MOO Mernu -_13

11 6 computat~i misOIrtlneg loom1,

1 10 p 2 -0 F36s
1.10.1 oom3199,, ma-thm 31 Mu

I1I0.10.Eolputoo 49,

l.IlprombWl 99002orn

1,111 Comipusin ae.1 41,M

I 115 Cmputaion 42M

1 12 pr~w biki 3520.ii

I. 17.1 cmpvAuiuc h 6c 111m

I U22 wnpuvAio, bimupro.m"vI 17541U___

1 3pw1 112 plvo 49,,

1 13 rogrm bl 12 16..

1 13 2 computaton -,4u 7411C

1 13,11 campuvic. £11U 14alag kafrua, 228m C

1 13 25 computafion57

I l~piogo- bd9I3 1024411

1141 .. pAgbalo "0Ur

1 14 10 mputkon 49.a ___ ___ __ ___ _____

Figure 5.19

I ouri~r - - EXOSIM 2 0 V20 I SA (Stage 3) -

I I _______WOO______

Il 123 computaten Inie 417m

1 124 wmituAsiol mosit.hogiegi 1553nr__________

I 125 roff~utatb 5M 1 rC

111 computation 73*e

122 compyulsion betw bguW 47m

I Z5Copuation 4941

13 poiI b~kW 195"1

13. oftio" Obrulnu ~ 1Im

1 4 piogam WW ~ ~ 24Wnr

I 4 1 co'puttlion gyro 23041"m

I A 3 omputaion a

1 5 pmgw bk. --17-99

151 comuttion tawg 4ame

1..I SSopulsiorrrtaw M6mI
IS 2 opuationa3

1 6 941qUY bOft 745enII

16. 1 complsion bMAo.)vc&,-Aokvaulo vO 122m

1 623 w"fpLation 55m1-
I 7Pm0go AM5. I Mee

1 71 compulsion nok 947m1

1173 computow4 455,

I T opulsion 49Mi

16 progwa bk7 509011

181 compulio ___ ___

IS 17 option WfvI6 _____ _____

19 9 comu~io m~.k.i1*g 1044ioI

1 10 progrumbWOO 5234.rm

1 10,1 comAZSA MVI I SANo____ __

1 10 2 mptvoe 1 1
I tol,g~w Itl Iopaio

II 1.1 cmpulion bii 41m1

1. Sromptadon

I Ilpfngrar bf1I2 1640.o

1111 wnipultionm o~ml~oatral co @ rg 221n,-

1 13 24 com~putation 5741I

1 141 compuRlsin, wro 32M

I 15pmrw1 ll 5234mi

I IS I OMfPLUaOa 494,b I~ -- -

Figure 5.20

5. Application Softw~re 97

b~kl3

bIkOB ER

MILR bIkO6 bIklO

bIkOO T S2AM 1

K ISSI7] bIkO7
MASSPJRBTHRST, NCU,

FRCTHR VTHR

bIkO4

TARGT RELALI A Jk09bk

blki 1

bk3ACCEL, blkO2
GYRO IMUPRO, OTU

NAVIG
FU

CORVEL, BSTEER, BOUID, bIkO5

MCGUID, SEEKER, SSPLAG,

I FRACS,
MCAUTO,
KVAUTO,

bIkl2 VOSLOG

OBTAFRG, ESTREL,
KALMANI

Figure 5.21: 15-partition version of EXOSINN 2.0

I
98 a.iual Report: Digital Emulation Tcchnolovy Laboratory Volume I, Part I I
5.1.2.13. SSV20.16

The sixteen-processor version was created by splitting the autopilots into boost and post-boost
partitions. This was done only to accornodate the FPP and produced no speed benelt. This is
not especially clear from Figures 5.3 -wnd 5.24. since we reverted to the more optimistic
estimates of communication time (in anticipation of being able to convert many of the floating-
point variables to shorter single-precision values). It is fairly evident, though, that the basic
parallelism does not change much between tliese versions except near the end of the cycle. 'AhCn
communication tends to dominate the total execution time.

I
I
I
I
I
I
I
I
I
I
I
I
I

5. Application Software 9

blkl3

blkO8 ER

=MLRmm blkO6 b.1k 10

ATMS IATMOSlI
b~kOO

MISSILT, blkO7
i MA S S P RN

FRTHR, VCSTH 1

blIk04

1blkO9 blkl4
TARGET, RELAT jrA~T 2

blki 1
blkO3

ACCEL, blkO2
GYRO IMUPRO, OTU

INAVIG Lu

bIkOl
blIk05

CORVEL, BSTEER, BGUID,
MOGUID, SEEKER, SSPLAG, BAUTO,
RESTHR IFRACS

btkl2 blkl 5

OBTARG, KVRLMAUTO,I
KALM ANN KVAT

Figure 5.22: 16-partition v9ersion of EXOSIM 2.0

EXOSIM 2O0V20 I SA (Stage 1)

I "Wq ..,'0'. 71958m, ~ -_______________

'1 1 1nompuation 88M'

I1 I I cmputation 87

1 1 17 cmpttimssr 945MME

II 123compulsion imeg 415M_ _ __I

1124 Ccpqatone9- o~n' 14,'____ ___ _

1 125 Mm~uAaho,, 49M~ 0

12 program bfkl.0 SSAOem

12 2 com.plibe.buWd 121,' M

I ZS coputation 46M,

1 3 ",gam~ bll02 1333a', I.

13 1 computaonWais 191M

1,411 computation gyf 2307m _ _ __ _ _

1 5 wM ',J,'9,4 17129m ~__ _ _

16 program b&05 WAM, I
16 1 comoutafo. baw.O.rcma 241 MNSO

1 623 computaion'55i

f 7 1oputation M',, 94 7m

1 73 coptation 459', _ _

17 5 compulsion ~Mos2 l5*9'.M

I @Program, bfk07 5240am.

14 e7 coputaion vrshr 41m

19 25 oration riir 21 9m~_

19 26 computation 49', _ M
19 program P11,8 40748"1

1 56 cmptationr.1 Sinleg 1042M~

0 pro'gram, brA09 538*.9'

1 10 1 compulsion, acita 418.

1 102 cmpuation 41m,

0 11 ODMPU1Z 08 49M'
111 a0W IkO.,m 4.2',,

I1115 computation 49',a

1 2?rra Pat 5611 38530M'I

I 122comoui4.nupr','avg 1741m,

1 12 12 o,,puaton. 49m, __________

I 13 omo,6..' At.2 15990,

1111 computation ,'5largg,sr, 21c0''

13 10 smfo 5..ep5 44,'

1 1 4 pmm A4513 Mir'',

1 14 1 compulnaa., 1241m

1 14 10 oniputabo,, 49M,

I I prm P~I 6.4 53944,1m-
1 15 1 8o0.asw amthit, 41m'

1 15 l~mt~.49M1 ___j___

Figure 5.23

EXOSIM 2O0V20 16A (Stage 1)

1.1 programblAMc 4512a"

1.1. 13 cmputaion M

I I 15comptablo ONm

I I I? colgimaspr 95

1,I123 comutamInoiadg In

1. 124 computation mssX.Mginfo 1543M___

1.1.3 opttn 49m

I2 Z Ioputation2r

I 2 cmutation bst .bguid 121 r

I Z5 cmputation a

13 vM r~b&02 121m

131 f bCOI lOptzo u" 9M

1. 4.1 comput~atinva =

.1Computationb WMA

1I 5. oompution imtik 2M7g

I S, 124A~ wffV~d IMm= ____ ____

f.0I cmptatbionI IM

1I l7comptaio~~ 49m I 0

1.7pmgw lM 34 -Gem

158 7. mpuli0o1 mmik~li 9047

11011 compuai42

I1l pogram bk0 3511w

1.11A compo4simt bl 444*

Ill 7 Cmputation ~

I 1.20 optto

1,11 computation* miukardetr.wu mc04d2m~

I I vw" W9 a917s

I ,1 I * 1 wnpusio amtha Al

1.4 10 0A~N 2 omuttin 1*

110 11Copaion 131

I I rgai *pAmb 0 all0b

I1I15 Co~mputatin 4011

I 12m'mmaloImSron 211.

I 1 rogrm 1 5640M

1 13 24 cFigureio5.24

I
102 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1 I
5.1.2.14. SSV21.16

We began producing another major revision, SSV21.16, based on our latest sixteen-processor
version, SSV20.16a. We chose to consider this a new version (21) because we were making n
changes which were fundamental to the program, while not actually adding any new partitions or
making changes just in a few partitions.

First, we manually split up the initialization code so that each processor initialized only what was
necessary. (This refers to the explicit initialization code, not the DATA statements). After
completing this task, the simulation produced the same results as before.

Then, we split up the DATA statements and all variable declarations, again so that each
processor carried no more code than is necessary. The declaration statements were automatically I
generated by the UNIX-based utility program "DECLARE" (described below) and the data
statements were automatically selected by an AWK filter.

We also created a new version that isolated the character strings and write statements scattered
throughout the code to one subroutine. This change was required because the FPP/FPX C
compiler does not support character strings and character I/O. During this same time, we began I
converting partitions to single-precision. Starting with the onboard guidance routines, two
partitions were converted successfully. One partition contained the boost guidance and steering
routines and the other contained the boost autopilot.

The general procedure for converting to single precision was determined. We began to convert
partitions one at a time, isolating the single-precision modifications to only the partition under I
consideration. Previously, it was necessary to simultaneously change several partitions in order
to match variable usage. The new method proceeded in two major stages on each partition. In

the first step, we simply linked a new set of communication routines which just truncate double-
precision values as they cross the partition boundary. No editing or recompilation is necessary
for the affected processor, since it still sees the truncated values as double precision. This step 3
simply verifies that no information going in or out of the partition really needs to be double
precision -- it does not show the effect of lowered precision on the partition's cumulative

calculations.

In the second step, the processor's code is modified as required to actually perform only single-
precision calculations. At the same time, another new set of communication routines is linked to I
automatically pad the single-precision values into double-precision values which are presented to
the rest of the simulation. This step verifies that the partition will truly nin at the lower

precision, but it delays the need for editing other partitions to accept the single-precision format. I
These two steps were repeated for each partition which we decided to convert.

A minor bug had crept into our 3- through 16-processor EXOSIM 2.0 simulations, causing the I
sequencing of bums to be different from the single-processor version. We reran the UNIX based I

I

5. Application Software 103

USAGE, COMBINE, and SUMMARY programs on V19.3c and found that the
SUMMARY.TXT file contained 10 variables that were being assigned by more than I processor
concurrently. We had looked at each of these variable conflicts during the development of
V19.3c and had determined that they would not be a problem.

We reexamined each one of these conflicts to determine if our original analysis was correct.
After some checking, the variables FLTC, FLTCP, & FLTCY (in VCSTHR) were found to be
the problem. We split VCSTHR into VCSTH I & VCSTH2 and moved the VCSTH2 part to the
correct processor. The corrected V19.3c and V21.16c simulations were tested and produced the
expected output. It should be noted that the automated analysis tools had correctly warned us of
the FLTC, FLTCP, & FLTCY variable conflicts but human analysis had failed to correctly
determine whether the conflicts were really a problem.

We moved the unclassified portions of the V21.16c FORTRAN source to the SUN host, where
they were converted and compiled. This pointed out, much as expected, that there were three
partitions would have to be split up further in order to run on the FPPs. There were also three
other partitions which were slightly too large, but can probably be trimmed down without
additional partitioning. At least one of the three large partitions will probably never be running
on an FPP, anyway.

We also started working on the capability of running FPP/FPX code (generated for the FPP/FPX
PFP on the SUN Unix system) on the 286/386 PFP. The ability to download and start FPP/FPX
code was there, but for some unknown reason, only simple programs worked. We wanted to get
this working so that we could test one FPP/FPX program block at a time while running the
remaining program blocks unmodified on 286s or 386s.

5.1.2.15. SSV22.16

We then began to generate version 22 (specifically, SSV22.16a), which was to eliminate most of
the double-precision calculations. We repeated the conversions of the boost-stage guidance and
control partitions, using a previous conversion as a model. With each partition that we
converted, we were able to isolate the only variables which had to be passed in as double
precision, using the methodology that has been outlined before.

In summary, the following partitions were initially converted to single precision:
Boost guidance
Boost autopilot
Output
Gyro
Atmosphere 1
Atmosphere 2
Boost and VCS thrusters
ACS thrusters 1
ACS thrusters 2
Missile rotational states
Aerodynamics

U
104 Annual Report: Digital Emulation Tedhnology Laboratory Volume 1, Part I

Each of these has been tested, and the simulation behaves normally. Because of the method that I
was used, we could easily switch back and forth between single and double precision for any
given partition with no recompilation. It is thus possible to test different combinations, in the

event that there turns out to be some cumulative effect as mom partitions are converted.

The following partitions had double-precision requirements that could not be eliminated at the

time:
Midcourse/te..-,,nal guidance
Midcourseterminal autopilot
Accelerometers/Navigation
Missile translational states
Target and relative states 3

I
I
I
I

I
I
I
I

I
I
I

5. Application Software 105

blkl 3

bIkOB ER

MILR bIkO6 bIk1 0

b~~k00 ~ATMO2AMS

bIkO T bk0

MASSPR
BTHRST, NCU,

FRCTHR, VCSTHR

bIkO4

TARGET, RELAT N ~ 0 b~A1

bIki 1
bIkO3

ACCEL, bIkO2
GYRO IURO,OU

bb~kO5

CORVL, BTEE, BGIDbIkl5
MGISEEKER, SSPLAG,

IKVAUTO,I

Figure 5.25: 17-partition version of EXOSIM 2.0

I
106 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I

1. SSV22.17 and SSV22.18

We completed a new 17-processor version, SSV22.17a, by splitting out SEEKER and SSPLAG
from the target and relative states partition. This would eventually have had to be done in order
to interface properly wvith an external seeker, and it also reduced the size of one of the partitions
which was too large for an FPP. We analyzed the communication and got mis version running

correctly.

We then converted the new partition to single precision, making version SSV22.17b. This has
been verified to produce the correct output. The larger partition that remained was still one of the
few remaining double precision ones, so we split out all of the double precision requirements to
another partition, creating the 18-processor version SSV22.18a. This was tested and verified.

The single-precision conversion was made on one of the resulting partitions, making version
SSV22.18b.

I
I
I
I
I
I
I
I
I

I,
I

5. Application Software 107

bIkl3

bIkOB ER

MILR bIk06 bIk1 0

bIkOO I0
MSSPRb~0

MASSPJRBTHRST, NCU,

FRCTHR, VCSTHR

bIkO4

FARGET,RELAT k9hkI

bb~kO3

IACCEL,I bIkO2
GYROIMUPROII

L NAVIG OUTPU

b~k01 blkl 7
BSTEER.bIkO5

RESTHRMLUI jBUO
FRACS

bIk16
bIk1 5

SEEKER, SSPLAG CUO

IKVAUTOPI
b~k1IVOSLOGI

OBTARG, ESTREL,
KALMAN I

Figure 5.26: 18-partition version of EXOSIM 2.0

I
108 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

5.1.2.16. SSV22.19

This left only two partitions which were too big for an FPP. One of these is currently targeted
for a 386 processor, but the other was fairly easy to split. This was done, resulting in the 19-
processor version SSV22.19a, which produced identical output. I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

5. Application Software 109

bIk13

bIkOB
L

MILR bIkO6 blklO0

bIkOOAMS2AMS

MISSILTbIkO7
MASSPR TRT k1

bIkO4 L1; =
bIkO9 bIkl4

TARGET, RELATLA L
____ ____ ___ ACSTH

bik 1

bIkO3
ACCEL, bIkO2

b~k01bIk17

BSTEER. IbIkOS
BGUID. CORVEL,
RESTHR IMOGUID BAUTOFI

bIkl6

SEEKER, SSPLAG MCAUTO7,

H KVAUITO,I

bIk12 VSLG

FBTAG, ESTREL,

Figure 5.27: 19-partition version of EXOSIM 2.0

Ii I I lMS WUL, 67m

1 1 36 wm~tzbonoq 415.

2 Pmgram WO1 51129.,

11Z =awQ bDf~g. 1

2.5;w, putam, 47,.

1 3 vo 65W2 lBw,,

3 1 ODML*Ago, wun,, 76.,

4 Plogu.b= 2226w., P

4 I ,,1p.I14 gymo 21551,- * -

4 3 =Waz- ~ 47m

i, 5pmvg. *652 10364M

:1 5 12w, bo s
16 o7W11sM6 3708M

I-, ta142,,,

1 9 p ________-- 373wt

I A .mp4Ew hNI 6621" I. - -t

a 1 tuas M 40",

12.gn 651 a66 ox*oi -t"jo90

'120 1 PAMWO I .1.V.1 40. _________

10. l23 viftrn 40,,

10g~~ 1 2 PW.bo I t

* W*31 134,a1 1i
o*o" S" K" I

14 2 moubwh326*

1 13y, 614aottr tia eta 11,

*13 11 =91lJaw 4a"', 41m1

'4 1 46'

1 6 6 344.,.

_ _ __ _ __ _ _ _*1 28I
9 I o~~p.,ao' 40t,,

5. Application Software II1

At the same time, we reexamined the continuing problcm of uninitialized variables in the original
version of EXOSIM 2.0. This reemerged as a problem when we attempted to compile the code
on the Transputer system (as a cross-check). A reexamination of the 1-processor and 16-
processor versions of EXOSIM V2.0 with the "new" version of INITIAL (described elsewhere)
spotted numerous uninitialized variables. The following code fragment is a simplified version of
the actual code, because all of these assignments were hidden inside subroutines.

IF T .GE. 5
FRCX =
FRCY =
FRCZ =

END IF
IF (T ,GE. 10

FXACS =
FYACS =
FZACS =
FXVCS =
FYVCS =
FZVCS =

END IF
FX = FRCX FXACS FXVCS
FY = FRCY * FYACS FYVCS
FZ = FRCZ FZACS FZVCS

As this shows, the FRC_ variables are uninitialized until T >= 5. Also, the FACS and FVCS
variables are also uninitialized until T >= 10. Consequently, the values of FX, FY, FZ are
suspect since they are computed sometimes with unknown values.

Unfortunately, the original EXOSIM V2.0 from Coleman Research contained many examples of
this type of programming. It is essential that this be fixed because it can cause some of the
hardest bugs to track down. When one considers how we move programs from 286/386 to
FPP/FPX processors, we don't want to introduce any unknowns into the problem by leaving
variables uninitialized.

The UNIX-based DECLARE program (described elsewhere) was modified to fix this problem by
assuring that every variable used in the program has an initial value. We used DECLARE in
order to generate a new I-processor version (SSV 18. lc) where all of the previously uninitialized
variables (1,167 to be exact) are initialized to zero with DATA statements.

The new version was then tested on the DEC ULTRIX system with both the VAX FORTRAN
Compiler. ULTRIX FORTRAN Compiler, the INTEL iRMXII system with the FORTRAN 286
Compiler, and the iMM PC with the Transputer FORTRAN Compiler. In all cases, the new
version worked perfectly.

The real test came when a 386 processor's memory was filled with NOT-A-NUMBER (NAN)
and then loaded and executed the program. The old version crashed immediately because the
387 tried to do an operation with NAN. The new version ran to completion without a problem.

We also began to support the integration of the Seeker Scene Emulator. Initially, this was be
done with the post-boost-only version of EXOSIM being written by Richard Pitts and Philip
Bingham. We worked with Andy Henshaw, implementing Richard's seeker partition on the
transputcrs. Steve provided a syntax translation of the EXOSINI V2.0 seeker routines, using his
FORTRAN-TO-OCCAM translator. Andy completed the conversion to Occam and debugged

m

112 Annual Report: Digital Emulation Technology Latxratory Volume 1, Part I

the code. We then tested our connection to the FPP-based PFP and were able to run the seeker
partition on an external transputer. The codc seemed to run correctly, bu, not identically to the
FPP version. Presumably, tus was due to differences in the floating-point precision in the
random number generator and elsewhere.

At this point, it became necessary to trim out all of the extra communication cycles so that we
could get accurate timing and begin converting blocks to the FPPs. We created a new version,
SSV22.19b, in which we manually resolved most of the precision differences between blocks.
Prior to tiis, all variables were being sent as double precision, even when they were calculated as
single precision, so coiflicts never occurred. We had to introduce a few new communication
routines to make precision conversions, and we modified the NETWORK program to correctly I
handle these new, routines. A new crossbar program was generated, and the version produced the
correct output. i
We then began to make final preparations for moving the code to FPPs. We trimmed out all of
the unnecessary receiving of single-preciswon values as doubles, and we eliminated all instances
of vanables being sent as doubles and used at different precisions on different processors. This I
latter step involved quite a bit more double-to-single conversion on the five remaining double-
precision partitions, eventually producing version SSV22.19f.

We continued to work with version SSV22.19f, which had all of the necessary precision
convcrsion completed. In preparation for porting individual partitions to the FPP, We prepared a
tliming version of the code, something we have not done since before the precision conversion
began. It \,as not possible to extrapolate the 386 timings exactly to FPP timings, but our best
estimate %as that we would be close to real time, but not quite there.

Based on the timing charts generated by Microsoft Project, we then reordered much of the
communication to balance the perfonancc across stages of flight. We have tested this version
and retimed it, replacing the previous SSV22..191 A timing chart for stage I (boost-phase) of
SSV22.19a is shown as Figure 5.28. Once again, we adjusted the theoretical communication
times, taking into account the mixture of single- and double-precision variables. This resulted in
an apparent lengthening of the total time relative to the last timed version, SSV20.16a, but the
newer version actually ran much faster (within about a factor of four or five of real time, which
was very good for the 386-based processors),.

We have, at least for the time being, leveled out at 19-processor implementations of EXOSIM
2.0. We created versions SSV22. 19 .e and SSV22. 19h. Version 22.19g was generated by the
VNIX-based DECLARE program. Ve' ctLptieu du te, tedi the new verion with main programs
that noi, include onlN the variablc required wkith each variable assigned an initial x alue with a
data statement Version 22.19h fixed a lck of th, partitions that would not otherwise fit on the I
FPP or FPX boards and is described in more detail bclow.

As noted in the past, additional partitions mi lht have to be made simpl\ to make EXOSIM fit on
the FPP and FPX processors. \ersion 5S\22 19.,, kta, rond to the Sun-hosted PFP, and all of
the blocks \,cre translated to C iusL I-ne2('). ificn conpiled and linked (using the new VICLI)

program) to determiInc iheir mcmi ir\ rcqu rincit, lhc. hull<\,n,' tablC sunumaries the results:

I

5. Application Software 113

PROGRAM / TYPE CODE DATA PROBLEM

SSBLKOO FPX 57708 4700 <-- code size

SSBLKO1 FPP 37032 1496

SSBLK02 FPP 5892 3356

SSBLK03 FPP 28224 2040

SSBLK04 FPX 56124 8140 <-- code size

SSBLK05 FPP 30696 10356 <-- data size

SSBLK06 FPP 21804 2212

SSBLK07 FPP 30132 3228

SSBLK08 FPP 28560 2060

SSBLK09 FPP 28656 1948

SSBLK10 FPP 7632 1152

SSBLKI IFPX 78516 4880 <-- code size

SSBLK12FPX 62964 4232 <-- code size

SSBLKI3 FPP 14820 8532 <-- data size

SSBLKI4 FPP 28116 1892

SSBLK15 FPX 135852 4292 <-- code size

SSBLK16 FPP 22872 2352

SSBLK17 FPP 34668 2200

SSBI.K 18 FPP 50388 2144 <-- code size

Some of these problems werec eliminatcd in the next version, SSV22.19h. The data sizes of both

SSBLK05 and SSBLK 13 werc reduced to accptable levels by eliminating some needlessly

duplicated arrays (which Aerc in the original single-processor version). The code size of

I
114 Annual Report: Digital Emulation Technology Laboratory Volume 1. Part 1

SSBLK 18 was reduced by making some array parameters local to the routine FRCTHR, since the
calling program did not reference them.

The remaining problems are more difficult, requiring either more partitioning or improved
compilers that generate more efficient (and perhaps faster) code. We are hesitant to make
partitions which would otherwise be unnecessary and contribute to additional communication
overhead.

As a separate effort, Richard Pitts and Philip Bingham have begun to use the most recent
complete version of EXOSIM developed by Steve Wachtel and Tom Collins as the basis of a
boost-phase-only version of EXOSIM 2.0. This requires mainly deleting some of the code thatn
is required only in the later stages of flight, along with some associated communication. This
also alleviates much of the memory problems described earlier.

5.2. LEAP

Beginning in January 1991, we began working with Brian Stevens at GTRI in Cobb County. We
discussed the LEAP program and GTRI's approach to its simulation. Hughes has both an
emulator (running actual LEAP code) and a simulation (used internally only). Brian attempted to
stay in contact with Hughes and make changes to his simulation accordingly. (There was no
mechanism by which design changes are automatically routed to GTRI.)

An earlier version of GTRI-LEAP was rather large and unwieldy, probably much like EXOSIM,
but Brian has concentrated on making a smaller, faster program. Much of the programming had
been done by an assistant, and Brian was not yet completely confident that it was correct. He
was also still making some organizational changes in the code, but had other responsibilities that
prevented him from spending much time on it.

Brian has developed his own FORTRAN executive (main) program for calling the LEAP
subroutines. This program is designed to be generic enough to be useful for other simulations of I
continuous/discrete hybrid systems, but it is not particularly suited to our needs. For this reason,
we will have to write our own main program, some general math routines, and integration

routines. There are two LEAP subroutines. One of them, "F," includes all of the continuous
time state variables and all of the corresponding derivative calculations. The state variables are
grouped as a single vector, which helps to identify them. The other function, "D," performs the

discrete time calculations.

The fastest sampling rate in the actual LEAP vehicle is 3600 Hz, corresponding to the

accelerometers and gyros. This has been chosen as the integration time step, and all discrete
events (seeker data, PWM, quaternion and control calculations) occur at even multiples of this
rate (either 60 Hz or 360 Hz). The F and D subroutines are both designed to be called at every
time step, since the discrete events are scheduled within the D routine by a time-step counter
(both from a standpoint of frequency and phase).

I

5. Application Software 115

The concise state-variable representation is suitable for the PFP, and the two-subroutine
implementation gives us a good start at partitioning into at least two processors. The complete
implementation of a parallel version, however, will take some time, though probably not nearly
as long as EXOSIM. We have already written the main program, and he has modified the
integration and 3-by-3 matrix multiplication routines from EXOSIM to be usable. We also
verified that the gravity calculations were correct, since the gravitational contribution had been
disabled in the GTRI version of LEAP. We currently have only the 'F" routine, which did
compile and run, but not all variables were initialized correctly. All of the intermediate versions
(prior to partitioning) will be run on a PC, the PFP host, and a single PFP target.

With regard to the uninitialized variables, we examined the GTRI code and came up with some
reasonable initial values, which enabled us to run our executive program with the GTRI vehicle
model. We tried running the simulation with an initially-stationary vehicle, as well as with a
non-zero initial velocity, both with and without gravity. The output indicates that the model
behaves correctly, at least from a qualitative standpoint. (The stationary vehicle falls toward
earth, and the moving vehicle continues moving).

We then continued with a quantitative evaluation of the simulation's performance. We let the
LEAP vehicle free-fall and observed that it fell at the correct rate. We also imparted an initial
spin and verified that it remained constant. We then calculated the correct altitude and initial
velocity to achieve geosynchronous orbit. When these values were used in the simulation, the
vehicle behaved approximately as expected, showing only a slight degradation of orbit after
several hundred seconds. By making the integration timestep larger, the degradation got worse,
which can be attributed to numerical inaccuracies. We may investigate smaller timesteps and
other integration algorithms, like RK4 (we are currently just using Euler, as in EXOSIM, but
Brian uses RK4 and variable-step methods).

It was confirmed that it is possible to change most of the LEAP variables to single-precision,
without significant effects on the program output. A temporary version was made in which the
only variables left as double precision were:

-- Earth coordinate system variables, including initial values

-- All coordinate-transformation matrices

-- Gravity calculations.

The gravity calculations are done in double-precision partly because they are based on Earth
coordinates and partly because the results can be very small. All intermediate versions of LEAP
will be left with only double-precision real numbers for the near future, since the GTRI source
uses double-precision. At some later time, we may choose to use more single-precision variables
to accomodate the FPP and the crossbar.

Graphic display capability was added to the program. We can plot orbits on the PC screen, and
we have run test cases of near-circular, elliptical, and parabolic trajectories. The graphics are

116 Annual Report: Digital Emulation Technology Laboratory Volume 1. Part 1

fairly simple, which may allow them to be ported to our graphics terminals on the PFP by simply
substituting a few routines.

Brian Stevens subsequently made some changes in his continuous-time routine, "F". Most of
these changes related to the coordinate systems, which had been redefined. Brian also cleaned up
some of the COMMON blocks, implemented cross-product torque terms, altered his use of the
quaternion, and eliminated some unnecessary variables.

Few changes were required to make this version of the main LEAP routines run with our
executive program. We simply had to replace some non-standard DO loops, correct some
double-precision constants, and modify the implementation of an initialization routine (to avoid
using the ENTRY statement, which is not supported on the Intel compiler). Three trajectories
were run to verify that the new version was consistent with the older one. All data is now output
in a format compatible with Excel, for easy plotting of values. For the first time, LEAP was I
ported to the RMX host. It compiled and ran fine, producing values that were. identical to those
from the PC version. 3
The working relationship with GTRI was productive, and their simulation was both lean and
modular. We will have to consider during the coming year whether to continue with this version
of LEAP or perhaps to work with the Hughes version.

I

I
I
I
!
I
I
I
I

6. Appendix A: Environment file format 117

6. Appendix A: Environment file format

The "ENVIRONMENT" file contains information necessary for mapping symbolic names used
by the PFP development tools to actual hardware. It is a text file, and each line contains either
information about a hardware element (crossbar, sequencer, or target processor) or a comment
(always with a "#" as the first character on the line). Example Ishows a full 32-processor
configuration. Normally, the ENVIRONMENT file does not need to be altered by the
programmer. It may be necessary to do so, however, if some processors are removed for service
or if memory settings are changed.

The form of a non-comment line in the ENVIRONMENT file is:

<element name> = <base address>;<limit address>;<element type>;

where <element name> is the label used by other applications to refer to that element, <base
address> is the starting memory address of the element in the host address space, <limit address>
is the number of valid memory locations (in bytes), and <element type> is one of several valid
element types. Currently the only element types supported are 80286, 80386, 29325, 29327,
0001, 0002, effe, and fffe. Four of these are processor types (80286, 80386, 29325, and 29327),
two are for the "first" crossbar and sequencer (0001 and effe, respectively), and two are for the
"second" crossbar and sequencer in a 64-processor system (0002 and fife, repectively). All
numeric fields are hexadecimal.

The <element name> field can be any 16-character string, as long as there are no repetitions.
These names are used in the PROCESS.TXT and NETWORK.TXT files for each application, so
they should usually not be changed from their default values (or else some applications will cease
to run correctly).

The <base address> field is not actually a true physical address. Only the last six hex digits
represent the memory address of each element. The first two hex digits are used to "turn on" the
appropriate card cage, since there are at least four active card cages in a PFP, all mapped to the
same address space but with no more than one enabled at any given time. This is done by
issuing a particular I/O command to the address 8XX, where the X's are the first two digits. All
of this is transparent to the programmer, so the eight-digit address can be viewed as a virtual
address.

Note that the example is for the "second" half of a 64-processor system. The first half would
contain processors p00 through p31.

I
118 Annual Report: Digital Emulation Technology Laboratory Volume 1. Part 1 1

Example 1: ENVIRONMENT. I
* network 2 configuration
crossbar = 00040000;020000;0002;
sequencer = 00000000;O10000;fffe;
upper right bank configuration
p58 = 02100000;100000;80286;
p33 = 02200000;100000;80286;
p3 7 = 02300000;100000;80286;
p48 = 02400000;100000;80286;
p52 = 02500000;100000;80286;
p47 = 02600000;100000;80286;
p43 = 02700000;100000;80286;

p63 = 02800000;100000;80286;
p59 = 02900000;100000;80286;
p32 = 02a00000;I00000;80286;
p36 = 02b00000;100000;80286;
middle right bank configuration
p45 = 04100000;100000;80286;
p41 = 04200000;100000;80286;
p61 = 04300000;100000;80286;
p57 = 04400000;100000;80286; I
p34 = 04500000;100000;80286;
p38 = 04600000;100000;80286;
p4 9 = 04700000;100000;80286;
p53 = 04800000;100000;80286;
p46 = 04900000;100000;80286; I
p42 = 04a00000;100000;80286;
p62 = 04b00000;I00000;80286;
lower right bank configuration
p51 = 06100000;100000;80286;
p55 = 06200000;100000;80286; I
p44 = 06300000;100000;80286;
p40 = 06400000;100000;80286;
p60 = 06500000;100000;80286;
p56 = 06600000;100000;80286;
p35 = 06700000;100000;80286; I
p39 = 06800000;100000;80286;
p50 = 06900000;100000;80286;
p54 = 06a00000;100000;80286;
<element name> = <base address>;<Iimit address>;<element type>;

I
I
I
I
I
I
I
I

7. Appendix B: vicid program source 119

7. Appendix B: vicid program source
FILE: vicid/Makefile

* Copyright 1991
Georgia Institute of Technology
Computer Engineering Research Laboratory
Author: Stephen R. Wachtel

default: vicld

CC =cc -g
INCLUDF
CFLAGS

vicld: vicld.o vicld sym.o
$(CC) -o vicli vicld.o vicld_sym.o

.SUFFIXES: .c 1)

$(CC) -c S(CFLAGS) $<

clean:

rm -r vicid vicld.o vicldsym.o

FILE: vicld/a.out.h

"Copyright 1991
" Georgia Institute of Technology
"Computer Engineering Research Laboratory

#include "magic.h'

exec header format

struct exec
unsigned long a magic; I' magic number *
unsigned long a_text; /* text segment size ~
unsigned long a-data; I' initialized data size*/
unsigned long a bss; /* uninitialized data size*/
unsigned long a syms; I' symbol table size*/
unsigned long a entry; /* entry point */
unsigned long a trsize; /* text relocation size*/
unsigned long a-drsize; /I data relocation s-zef/

kdefineN BADMAG(x)\
(B1AD_PFP_MAGIC((x).a_magic))

object file section offsets

#defineNTXTOFF(x)\
sizeof(struct exec)

kdefine N DTAOF'F(x) \
(N _TXTOF'P(x) - x) .a _ ext)

#define N TPRLOFF (x) '
(N_ DTAOFF(x) - (x(.a _da.,i)

#define N DRLOFF(x) \
(N -TRLOEE(x) *(x).a t~rKze)

#def-re N SYMOFF(x)\
(N_ DRLOFF(x) (x) .a drs~ze)

4*define NTROFF(x)\

I
120 Annual Report: Digital Emulation Technology Laboratory Volume 1. Part 1 3

(NSYMOFF(x) + (x).asyms)

relocation information format

struct relocation-info

long r_address; /* address which is relocated */

unsigned int r symbolnum:24, /* local symbol ordinal "/

r_pcrel:l, /* was relocated pc relative already
r length:2, /* O=byte, 1=2 bytes, 2=4 bytes, 3=<invalid> */
r extern:l, /* does not include value of sym referenced */
:4; /* unused /

};

symbol table entry format

struct nlist f
union f

char *nname; /* for use when in-core */

n-un; long n_strx; /* index into file string table */

unsigned char ntype; / type flag (NTEXT,..) */
char nother; /* unused */
short n-hash; /* see <stab.h> */
unsigned long nvalue; / value of symbol (or sdb offset) */ U
Simple values for ntype.

#define N UNDF OxO /* undefined
#define N-ABS 0x2 /* absolute */
#define N-TEXT 0x4 /* text "/
#define N-DATA Ox6 /* data /
#define N-BSS Ox8 /* bss */ I
#define N-COMM 0x12 /* common (internal to Id) */
#define N-FN Oxlf /* file name symbol */
#define N-EXT 01 /* external bit, or'ed in /
#define NTYPE Oxle /* mask for all the type bits / 3

Dbx entries have some of the NSTAB bits set.
These are given in <stab.h>

#define N_STAB Oxe0 /* if any of these bits set, a dbx symbol */

FILE: vicld/magic.h

I. I
* Copyright 1991
* Georgia Institute of Technology

" Computer Engineering Research Laboratory 3
#define PFP MAGIC FPP LOADABLE Ox5O5O4603 /* "\003FPP" 'I
#define PFPMAGIC FPP-LINKABLE 0x70706603 /* "\003fpp" */
#define PFP MAGIC-FPX-LOADABLE Ox58504603 /* "\003FPX" */
#define PFPMAGIC FPX LINKABLE 0x78706603 / "\003fpx" 1/
#define PFPMAGIC SEQ LOADABLE 0x51455303 / "\003SEQ" */

#define PFPMAGIC XBAR LOADABLE 0x52415803 /* "\003XBR" */
#define PFP-MAGIC-286 LOADABLE 0x36383203 /* "\003286" /
#define PFPMAGIC 286 KERNEL 0x4b383203 / "\00328K" */
$define PFPMAGIC 286 BOOTSTRAP 0x42383203 /* "\00328B" */ U
#define PFP MAGIC 386 LOADABLE 0x36383303 /* "\003386" 1
#define PFP MAGIC 386 KERNEL 0x4b383303 / "\00328K" */
#define PFP-MAGIC-386-BOOTSTRAP 0x42383303 /* "\0C338B" "/
#define PFPMAGIC_386-COFF 0x0004014c /* by inspection '/ 3
#define BAD PFP MAGIC(x) \

((x) !=-PFP MAGIC FPP LC)ACABLE
&g (x) = PFP MAGIC FP? L:NKABL[R '
~& (:} PFP -AGc-FEX :LADA!4L
&& (x) = PFP_VAS-C-FPX-L:NKABLE I

I

7. Appendix B: vicld program source 121

&& (x) PFP MAGIC SEQ LOADABLE
&& (x) PFP-MAGIC XBAR LOADABLE
&& (x) PFP-MAGIC-286 LOADABLE
&& (x) PFP-MAGIC-286-KERNEL
&& (x) PFP-MAGIC-286-BOOTSTRAP
&& (x) 1= PFP-MAGIC-386-LOADABLE
&& (x) PFP-MAGIC-386-KERNEL
&& (x) PFP-MAGIC-386-BOOTSTRAP
&& (x) PFPMAGIC_386_COFF

FILE: vicld/vicld.c

/-

Copyrignt 1991
Georgia Institute of Technology
Computer Engineering Research Laboratory

* Author: Stephen R. Wachtel
#/

#include <stdio.h>
#include <string.h>

#include "a.out.h"
#include "vicld.h"
#include "vicld_sym.h"

#define TEXT SIZE 12
#define DATA SIZE 4
#define BSSSIZE DATASIZE

int number-error = 0;
int number-object - 0;

#define NUMBEROBJECT 1024
OBJECT input _object[NUMBER OBJECT J;
OBJECT output object;

int compare(entryl, entry2
RELOCATION -entryl;
RELOCATION *entry2;

/* qsort compare */
re urn(entryl->r_address - entry2->r_address);

I- compare */

void read object_header(object
OBJECT *object;

/* read header 1
fread(&object->header, sizeof(HEADER C, 1, object->file C;

/' check header */
switch (object->header.a_magic

case PFPMAGIC FPP LINKABLE:
output object.header.a_magic = PFP _MAGIC_FPP _LOADABLE;
break;

case PFPMAGICFPX LINKABLE:
outputobject.headpr.a_magic = PFPMAGC FPXLOADABLE;
break;

defauit:
,printf(siderr, "ER',CR: maqc number '%s'\n", ob~ect->name);
exit()

I
122 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1 U
) I* read-objectheader *I

void readobjectstring(object) I
OBJECT *object;

int length;
STRING *string;

/* read string table length '/
fseek(object->file, (long)NSTROFF(object->header), 0);
fread(&length, sizeof(length), 1, object->file);

/* allocate string table */
string = (STRING *)error malloc(length);
/* read string table */

fseek(object->file, (long)NSTROFF(oijvct->header), 0);
fread(string, length, 1, object->file);

/* save string table */
object->string - string;

/* read-object-string */

void readobjectsymbol(object
OBJECT *object;

int length;
SYMBOL *symbol;

/* read symbol table length /I
length = object->header.asyms; I
/* allocate symbol table */
symbol = (SYMBOL *)error malloc(length

/* read symbol table */ I
fseek(object->file, (long)N SYMOFF(object->header ,
fread(symbol, length, 1, object->file);

/* store symbol table */
object->symbol = symbol;

/ read-object-symbol */

void read object_tr(object
OBJECT *object;

int length;
RELOCATION 'tr;

/' read text relocation table length II
length = object->header.a trsize;

/I allocate text relocation table I/
tr = (RELOCATION *)errormalloc(length); 3
/I read text relocation table */
fseek(object->file, (long)NTRLOFF(object->header), 0);
fread(tr, length, 1, object->file);

/' sort text relocation table '/ I
qsort(tr, length / sizeof(RELOCATION sizeof(RELOCATION), compare);

/* store text relocation table '/

object->tr = tr;
/* read_obiect _tr */

void readoblect _dr(object
OBJECT *object;

int length;
RELOCATION *dr;

/* read data relocatlion tar,. .noth "3

U

7. Appendix B: vicid programn source 123

length =object->header.a_drsize;

/* allocate data relocation table ~
dr = (RELOCATION *)error_malloc(length)

I' read data relocation table 1/
fseek(object-)file. (long)N_DRLOFF(object->header), 0)
fread(dr, length, 1, object->file

/* sort data relocation table */
qsort(dr, length / sizeof(RELOCATION),sizeof(RELOCATION).compare)

/* store data relocation table '
object->dr = dr;

/* read object-dr ./

void update object symbol (object
OBJECT *object;

int length;
register mnt index;

/* calculate symbol table length I/
length = object->header.a syms / sizeof(SYMBOL)

/* replace symbol index with syr-bol name
for (index = 0; index !=length; index-

object->symbol[index 1.n urn.n name = &object->string[object->symbol[
index I.n -un.n-strx I;

/*I update_object symbol "

void rdd input_ob~ecL

register mnt object-number;

for (object number -0; object _number '=number_object; object-number'+

if ((input objecti object number JVfile = fopen(input-object[
object_number].name, "r" I =NULL

fprintf(stderr, "ERROR: unable to open '%s'\n", input objectE
object-_number).name);

exit(1 1

read object-header(&inoutobject[' object_number I I

read object stringl 4iinput-object[object_number J I

read object syinboll &input-object[object_number I

read object _tr(&inpu-t_object[object number II

read object drl &input_object[object number II

update-object _symbol(&input-object[object_number

fciose(input object7 object -nurrber j'.file I

/read input _object

vo'd print object _neader(object.
CBOJECT *object;

fprintf(stdcut, "HEADER:\r'

switch (object->header.a_maq'c

case PFP _MAGIC VPP :N.APLE:
fprJ r,,I t~c -, Ip:

case PVP YAC;:Z ??X 7L9>.*A'1:

124 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I3

fprintf(stdout, "fpx object\n")
break;

deal:fprintf(stderr, "ERROR: magic number Qsl\n", object->name ~
exit(1I)

fprjntf(stdout, -text size =dWn", object->header.a_text I
fprintf(stdout, "data size %dWn", object->header.a_data I
fprintf(stdout, "bss size = Wdn", object->header.a_bss I

fprintf(stdout, "entry address = W"
object->header.a entry);I
fprintf(stdout, "text relocation table length W"
object->header.a trsize / sizeof C RELOCATION) I
fprintf(stdout, "data relocation table length Wn"
object->header.a drsize / sizeof(RELOCATION) I
fprintf(stdout, "symbol table length W"
object->header.asyms /sizeoft SYMBOL II

fprintf(stdout, -\n" I
V' print_object header */

void print object symbol C object
OBJECT *object;

register mnt index;I

fprintf(stdout, "SYMBOL TABLE:\n")

I" calculate symbol table length */
length = object->header.a syms / sizeof(SYMBOL I

I"' print symbol table record '

for (index - 0; index !=length; index*++

symbol = &object->symbol[index 1;

fprintf(stdout, "%s %d %d %d %d\n",

symbol->n un.n name. symbol->n type, symbol ->n other, symbol->n hash,I

fprintf(stdout, -\n"
/*I print _object_symbol */

void print object_tr(object
OBJECT *object;

register mnt index;I
mnt length;
RELOCATION *tr;

fprintf(stdout, "TEXT RELOCATION TABLE:\n" I

V" calculate text relocation table length *I
length = object->header.a-trsize / sizeof I RELOCATION I

/- print text relocation table record */

for (index = 0; index != length; index++

tr = &object->tr[index I;

fprintf(stdout, "%d %d %d %d %d\n",I
tr->r_ address, tr->r_ symbolnun', tr->r pcrei, tr->r_ length, tr->r extern I

fprintf I stdout, "\n"

I' print object tr -/

void print object drl ob~ect

ORECT *object;-I

7. Appendix B: vicid program source 125

register int index;
int length;
RELOCATION *dr;

fprintf(stdout, "DATA RELOCATION TABLE:\n")

/* calculate data relocation table length *I
length = object->header.a_drsize / sizeof(RELUCATION)

/* print data relocation table record */
for (index = 0; index != length; index++

dr = &object->dr[index

fprintf(stdout, "%d %d %d %d %d\n",
dr->r address, dr->r-symbolnum, dr->r-pcrel, dr->r_length, dr->r extern)

fprintf(stdout, 11\n")
I" print_object_dr */

register mnt object_number;

for (object number = 0; object number != number-object; object number+i

fprintf(stdout, "%s (%s):\n", input-object[object number].name,
(input-object [object-number '.required ? "required"' "not required"

print_object_ header(&input object[object-number J

print_object symbol(&inputobject[object_number I

print object _tr(&inputobject[object number I

print object_dr(&input-object[object number]

fprintf(stdout, "\n")

1* print-input-object/

void add public_ symrbol(

register tnt object number;
register int index;
int length;
SYMBOL *symbol;
STRING *string;
LIST *list;

for (object_number = 0; objectnumber number object; object-number++

1' calculate symbol table length "
length = input-object[object number- J.header.a syms / sizeol(SYMBOL

I' search symbol table for public symbol "
for (index = 0; index 1= ength; index++

symbol = &inDUt objecl- an~ect _number].symbol', index

if(Csymbol >n ype & NLFXT C!NEXT

string sym -c1->n_,un.n name;

if (f'rd sym-cl(string C =NULL

lst =add symbol C string
l ist >' -type = symbol-)n type;
'st>n other =symbol->n other;
1'st->nhash = symbol->n_ hash;
list->n valie =symboi->n value;

'i'>--b'-t nu;rnbe r -object _ number;

Ce

f rr'f(s' do;:t, "WARNI NC: pui'e deccartor

126 Annual Report: Digital Emulation Technology Laboratory Volume 1. Part I3

Its'\,)", string;

i *add public symbol II/I

void resolve-external _symbol I object number
int object-number;U

/* recursive '
int index;
i length;

RELOCATION *tr;I
RELOCATION *dr;
STRING *Istring;
LIST *list;

if (input object[object_number] .requi redI
return;

input _object(object number i.required = 1;

1* calculate Lext relocation table length I/3
length = input object(object number j.header.a _trsize /sizeof(RELCCAT:ON

1' search text relocation table tor external symbol I/
for (index = 0; index !=iength; irdex -

tr &input object: oo) ect~n-_.oer .rindexI

if (r->,rextern

.n un.n name; string = i'nput, -object" ob~ect numrber '.symol t-smonr

list = find symbol) string I

if (list !=NULL)
resolve external syrrmol list->object _number

else

fprintf) stderr, "WARNING: unresolved reference ts'\n",
string)

aS. ad_yrrrocl' string

nurnoer error

1* calculate data relocation table lengtn
length = input oblect onject _number :.header.a drsize /sizeof) RELOCATION

/* search data relocation table for exiernal symool '
for (index = 0; index 1= length; index,+

dr &input_objectl object number j.dr' index 1;

if Idr->r-extern

strinq inou, ob'.ec' oiect n, umber .symbol dr-> r _symbolnur.

unnnamtL;

re' ex F'a. sy,-t (I s-)u>b eu_- ru,;noer

r e S e e X er. sy-rnc.

7. Appendix B: yield program source 127

void write output _header(

register int object number;

output _object.beader.a -text = 0;
output_object.beader.a -data C ;
output_object.header.a bss = 0;

for (object number = 0; objectnurrer in urroeroo'ect; oobect numoe:-'

if (!input object: cbwect nunoer :.reouireo
continue;

output object.heaaer~anx - rp"t cc~ect: cvect onDor :.7eauer.a text;
output object.header a cat - :rpotob'ect' cn'ect nsner :.neaoer.a nata;
output object.heaoer a oss -- put onject. on~ect corer .neaner.aDss

output _object.heider.a entry NTX C P(outputobject.neaoer
output_object.header.a -trsize ;
output object.header.a -drsize 0
outout-object.header.a-syms =0

fwrite(&outiput _ob~ect.neaoe-, sizeo'(ootput cD7Cct.ceader), 1,
output _object.file)
I /- write output header

vc-A crint _map(

regi ster int actect number;

fprict f(stdout, "MAP:\c")

for (obtect numoer = C; ob~ect cuoer '= corwer ccect; oDjectnrnaecr

if (!input ob'ectj on:ectnu"ner . .requireo
continue;

fprintf(stdout, "%-64s ",input ob~ect: object number 2 'a're
fprintf(stdout, "%6d ", input object: obtect nmber '.header.a text
fpr~ntf C stoout, '%@rlxc", :7cu: cotect ohlecr number :.neaoer.A oata

iqnobject: obiect _number 2 .header.a bss C

fprintf C staout, "%-64s ", "CTLOA");
fprint f stout, "%Eo ", cunptoutcwect heauer .atext
fprintf C steout, "%dn" utputcb-ect.neader.a cata cuot ccreoro:s

/*print map "

vcid opoate puolt _ symool C

register ino oo~ectnuitoer'
register t-t 'ndex;
int length;
SYMBOL *symo;
L:ST *list

0"'p0"

.Pi ojcl re ec ~ o V5 A " :.n0s

nac.eq7P .. '.p ,I;:n

128 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1I

for index = 0; index !=length; index*~+

symbol = &input_object! object_number) .symbol[index J;

if C symbol->n_type & N_EXT C =N_EXT

list = find-symboiC symbol->n_un.n_name)

switch (iist->ntyr & N_TYPEI

case NTEXT:
list->n-value += input objectl object_number

I .text;
break;I

case NDATA:
list->n value += input object[ohject_number

I .data;
break;I

case N_BSS:
list->n-value += input object! object number

.bss
break;

output object.text '- input object! object-number ! .header.a-text /
TEXTSIZE); I

output object.data -~ input object![object-number !.header.a_data/

DATASIZE);
output_object.bss - input object! object-number !.header.a bss /

BSSSIZE);I

1' update public symbol '

void write object_text C objectI
OBJECT *object;

register int index;
int length;

int address;I

unsigned short text;
LIST *list;

fseek(object->file, Clong)N_TXTOFF(object->header 0,C I

I' calculate text relocation table length '
length = object->header.a-trsize ' sizeof C RELOCATION C

I' relocate text relocation table record '
for Cindex = 0; index !=length; index++

tr = &object->tr[index 1;

/* skip text 1 I
while (address < tr->r_address

fread(&text, sizeof(text 1 , object->file
fwrite(&text, sizeof(text K1, output object.fiie C

address += sizeof C text

1' relocat.e text/
ftread(&text, s'zeof(tex*.), 1, cb-ect-file

ifCtr->r extern

f; lis fnd syrbc: ot cec- ->syrbol t r-> rsymbol num .nun. nnane3

if s
'ex, ~ -r a~e

e ise

7. Appendix B: vicld program source 129

switch (tr->rsymbolnum

case NTEXT:
text += object->text;
break;

case NDATA:
text += object->data;
break;

case NBSS:
text += object->bss
break;

fwrite(&text, sizeof(text), 1, outputobject.file);
address += sizeof(text);

/* copy text */
while (address < object->header.a_text

fread(&text, sizeof(text), 1, object->file);
fwrite(&text, sizeof(text 1 1, output object.file);
address += sizeof(text);

} / write object_text t/

void write object data(object
OBJECT *object;

register int index;
int length;
int address;
RELOCATION *dr;
unsigned long data;
LIST *list;

fseek(object->file, (long)N_DTAOFF(object->header), 0);
address = 0;

/* calculate data relocation table length '/
length = object->header.a_drsize / sizeof(RELOCATION);

/* relocate data relocation table record /
for (index = 0; index != length; index++

dr = &object-; ir[index 1;

'* skip data */
while (address < dr->r address

fread(&data, sizeof(data 1, 1, object->file);
fwrite(&data, sizeof(data 1, outputobject.file I;
address += sizeof(data);

/* relocate data '/
fread(&data, sizeof(data), 1, object->file);

if (dr->rextern

list = find symbol(object->symbol[dr->rsymbolnum .nun.n name

if (list != NULL
data +- list->nvalue;

else

switch (dr->rsymbolnurr

case N TEXT:
data - object->text;
break;

case N DATA:
data -= object->data;

130 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I3

break;

case NBSS:

data += object->bssI

fwrite(&data, sizeof(data),1, output_object.file)

address += sizeof(data)

/* copy data ~
while (address < object->header.a_data

fread(&data, sizeof(data 4,1, object->file I

fwrite(&data, sizeof(data 4, , output_object.file 4
address 4-sizeof(data 4

/* write_object_data ~

void write~output~object(

register mnt object_number;

/* relocate text */
fseek(output object.file, (longlN_TXTOFF(output object.header 4,0

for (object_number = 0; object_number !=number object; object_number++

if 4 input_object I object_number] .required
continue;

if Cinput object[object_number I.file = fopen(input object[
object number).name, "r" 4 =NULL

fprintf(stderr, "ERROR: unable to open '%s'\n", input object[

object number].name); extI

write-object text(&input_object[object_number I 4

fclose(input object[object _number I.file 4

/* relocate data/
fseek(output object-file, (lcng)N_DTAOFF(output object.header), 0 4

for (object_number = 0; object number !=number_object; object _number+±

if I input~objecti object number I.required
cont inue;

if 44input _objectj object nwmrber !.file = fopen(inc.~totect
obiect_number J.name, "r") =NjLL

fprintf(staerr, "ERROR: unabie to open '%s \n", ir7"-onject:
object number].name 4; extI

write-object datal &input _ozject! object number

fclose(input object [object number !filie

/* write output object '

#define PROGRAM argument[I 0
#define ARGUMENT argument[I 1 + argument number

int main(I number_argument, argument
int number_argument;
char *argument[1;3

7. Appendix B: vicid program source 131

register int argument number:

if (--number argument == 0

fprintf(stderr, "usage: %s <object> [<object> ... J\n", PROGRAM)
exit(1)

fprintf(stderr, IIFPP/FPX LOADER version: 1.0 07/10/91\n")

initialize symnbol-table();

for (argument-number = 0; argument number number argument; argument number++

if (strcmp(ARGUMENT, "-map") 0

map = 1;
continue;

input object[number object].name = ARGUMENT;
input object[number_object].required =0;

if (+1-number object == NUMBER_OBJECT

fprintf(&Lderr, "ERROR: number object %d\n", NUMBEROBJECT)
exit(1)

read_input object(1

add public symbol (

resolve-external-symbol(0)

#ifdef DEBUG
print_input object(I

#endi f

output_object.name =strdup(Ila.out" I
output _object.required = 0;

if ((output object.file = fopen(output object.name, 11w+11)= NULL

fprintf(stderr, "ERROR: unable to open '%sl\n", output object.name)
exit(1)

write_output headerl I

if (map)
print map(I

update_public_symbol()

#ifdef DEBUG
print _symbol tablel)

#endi f

w rite_output object()

fclose(output object.file)

exit(number-error)
/I main */

FILE: vicid/vicld.h

"Copyright 1991
" Georgia Institute of Technology
" Computer Engineering Research Laboratory
" Author: Stephen R, Wachtel

#define HEADER struct exec
Adefine STRING char

132 Annual Report: Digital Emulation Technology Laboratory Volume 1. Part 1I

#define SYMBOL struct nljst
#define RELOCATION struct relocation-info

#define OBJECT struct object type
OBJECT

char *name;I
FILE *file;
HEADER header;
STRING *string;
SYMBOL *symbol;

RELOCATION *tr;I
int text;
int data;
int bss;
mnt required;

mnt compare(/* RELOCATION *entryl, RELOCATION *entry2 I)
void read object header(/* OBJECT *object */),I
void read object_string(/* OBJECT *object I/)

void read object_symbol (/* OBJECT *object */
void updat~e_object symbol(/* OBJECT *object /;
void read object tr(/* OBJECT *object 1)
void read_object dr(/* OBJECT *object /)I
void read input object(/* void */);
void print object_header(/* OBJECT *object 1;
void printobjectsymbol(/* OBJECT *object 1)
void print object tr(/* OBJECT *object*1)
void print object_dr(/* OBJECT *object 1)I
void print input object(/* void /)
void add -public symbol(/* void 1)
void resolve -external_symbol(/* mt object_number I;
void write output header(/* void /)
void print map(/7 void I/);I
void update_public symbol(/* void*/;
void write object text(/* OBJECT *object 13
void write object_data(I' OBJECT *object 13
void write output object() ;

int main(7* int number argument, char *argument[/;I

FILE: vicld/vicldsym.c

" Copyright 1991
" Georgia Institute of Technology
" Computer Engineering Research Laboratory

* symbol -- symbol table and mapping routines

#include <stdio.h>
#include <string.h>
#include "vicldsym.h"

* MAXHASH -- determines the hash table width.
* symtab -- the symbol table structure

#define MAXHASH 311U
#define MAXESYMS 50

static LIST -symtab(MAXHASH];

* external routine declarations

char *malloco;

7. Appendix B: vicid program source 133

* error-malloc --- error checking malloc routine

char
error malloc(size)
unsigned int size;

char *p;

if M (p - malloc(size)))

fprintf(stderr,"no more dynamic storage - aborting\n");
exit (1);

return (p);
} /* error malloc */

hash --- scramble a name (hopefully) uniformly to fit in a table

static unsigned int
hash(name)
register cha- *name;

register unsigned int h 0;
while (*name.

h <<= 4;
h ^= *name++;

return(h % MAXHASH);

* addsymbol --- enter a name into the symbol table*/

LIST *
add symbol(name)
char *name;

register LIST * p;
unsigned int h;

/*
* create an entry and insert it at the front of the table

h = hash(name);

p = (LIST *) error malloc(sizeof(LIST));
p->nname = strdup(name);
p->n_type = 0;
p->n other = 0;
p->n hash = 0;
p->n value = 0;
p->object number = 0;
p->next = symtab[h];

symtab[hl = p;
return(p);

* find symbol --- lookup a symbol in the symbol table

* findsymbol scans the symbol table and returns a pointer to
* the symbol table entry
-/

LIST *
findsymbol(name)
char *name;

register LIST * p;
unsigned int h;
h = hash(name);
for (p = symtab[hi; p != 0; p = p->next)

134 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 13

if (strcmp(p->n name, name) = 0)
break;

return (p);3

void initialize_symbol_table))

bzero(symtab, MAXHASH *sizeof(LIST);I

/* initialize_symbol-table "

void print symbol_table))

unsigned int h;I

fprintf(stdout, "SYM~BOL TABLE:\n")

for (h = 0; h !=MAXHASH; h++

for (p =symtab[h 1; p !=0; p p->next

fprintf(stdout, *"%s %d %d %d %d\n",

p->n name, p->n type, p->n other, p->n_hash, p->n-value)

fprintf(stdout, "Wn')

I/* print symbol_table "

FILE: vicld/vicldsym.h3

" Copyright 1991
"Georgia Institute of Technology

* Computer Engineering Research Laboratory

/see struct nlist in a.out.h for explanantion of structure/3

#define LIST struct list type
LIST

char *n name;5
unsigned char ntype;
char n-other;
short n-hash;
unsigned long n -value;
mnt object_number;
LIST *next;

char *error malloc(/* unsigned mnt *
LIST *add-Symbol(/* char*

LIST *find symbol(/* char

void print symbol_table(/* void *)

8. Appendix C: loadfpp program source 135

8. Appendix C: Ioadfpp program source
FILE: loadfpp/Makefile

Copyright 1991
Georgia Institute of Technology
* Computer Engineering Research Laboratory
Author: Stephen R. Wachtel

cflags =large optimize(3) debug\
searchinclude(:LIB:ic286/, :PFP:include/

loadfpp: loadfpp.obj
submit :PFP:csdfcbndl(loadfpp, loadfpp.obj, debug

loadfpp.obj: loadfpp.c
ic286 loadfpp.c S(cflags)

clean:
delete loadfpp,*.lst,'.obj, '.mp?

FILE: loadfpp/fpp.h

" Copyright 1991
"Georgia Institute of Technology
"Computer Engineering Research Laboratory
"Author: Stephen R. Wachtel

FPPCODE

I* word 0/
unsigned s index register: 4;
unsigned r_index register:4;
unsigned f_indexregister:4;
unsigned s-index -flag:l;
unsigned r_index flag:l;
unsigned f index flag:l;
unsigned msw_selector:l;

/* word 1
unsigned s-address:16;

/* word 2
unsigned r-address:l6;

/* word 3 ~
unsigned f-address:16;

I' word 4 '
unsigned mc325_opcode: 3;
unsigned f_to_s_flag:l;
unsigned f_to_r_flag:l;
unsigned f-flag:l;
unsigned read cocode:2;
unsigned branch-selectcr:!;
unsigned write cpcode: 3;
unsigned branch opcode: 4;

/* word 5/
unsigned branch-address:12;
unsigned am29l0_opcode:4;

#define FP2DATA struct fpp data type
FP22DATA

/I word 0 '
unsigned short I'sw;

I
136 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

/* word 1 */
unsigned short msw;

FILE: loadfpp/loadfpp.c

" Copyright 1991
* Georgia Institute of Technology
" Computer Engineering Research Laboratory
" Author: Stephen R. Wachtel

#include <stdio.h>
#include <stdlib.h>
#include <host.h>

#include "a.out.h"
#include "fpp.h"

#define DATA PORT OxOcOQO
#define STATUSPORT OxOe000

char *value; I
unsigned long base;
unsigned long limit;
unsigned long type;

HEADER header; I
unsigned short bufferf61 [40961;

FPP CODE instruction; I
unsigned short programcounter;

void stop_processor(void)

unsigned short status;

status = 0;
poke(base + STATUS-PORT, &status, sizeof(status));
peek(base + STATUSPORT, &status, sizeof(status));
if C C status & 4) 4

fprintf(stderr, "ERROR: unable to stop the processor\n" C;
exit(-1);

C /* stopprocessor */

void start processor(void

unsigned short status;

status = 1;
poke(base + STATUSPORT, &status, sizeof(status) C;
peek(base + STATUSPORT, &status, sizeof(status C);
if C (status & 4)== 4

fprintf(stderr, "ERROR: unable to start the processor\n");
exit(-1 C;

/* start processor '/

void senddata(unsigned short *buffer

unsigned short count;
unsigned short status;

for (count = 0; count != 1024; count.+)

peek(base + STATUSPORT, &status, sizeof(status));

I

8. Appendix C: loadfpp program source 137

if ((status & 2) == 2

poke(base + DATA_PORT, buffer, sizeof(*buffer));
return;

fprintf(stderr, "ERROR: unable to send data\n");
exit(-1);

/* send-data */

void receive-data(unsigr-d short *buffer

unsigned short count;
unsigned short status;

for (count = 0; count != 1024; count++

peek(base + STATUSPORT, &status, sizeof(status ;
if C C status & 1) == 1

peek(base + DATAPORT, buffer, sizeof(*buffer));
return;

fprintf(stderr, "rmaRR: -' -ble to receive data\n");
exit(-.);

} /* receive-data '/

vo4id reset instruction(void

/I word 5 '/
instruction.am2910_opcode = 14;
instruction.branch address = 0;

I* word 4 */
instruction.branch opcode = 0;
instruction.writeopcode = 0;
instruction.branch selector = 0;
instruction.readopcode = 0;
instruction.f flag = 0;
instruction.f to_r_ flag = 0;
instruction.f to sflag - 0;
instruction.mc325_opcode = 0;

/* word 3 */
instruction.f address = 0;

/- word 2 */
instruction.r address = 1;

/* word 1 */
ins~ruction.s address = 1;

/* word 0 */
instruction.msw selector = 0;
instruction.f indexflag = 0;
instruction.rindexflag = 0;
instruction.s indexflag = 0;
instruction.f indexregister = 0;
instruction.r index register = 0;
instruction.s index register = 0;

1/ reset instruction */

void load in-truction(void

unsigned short index;

if (programcounter == 4096

fprintf(stderr, "ERROR: number instruction > 4096\n" C;
exit(-1 C;

for (index = 0; index != 6; index+)

buffer[index 1[program counter C (unsigned short *)&instruction)f

138 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part I3

index I;

program counter++;

void generate-receive(unsigned short address

unsigned short count =2;

reset-instruction();

instruction.f address =address;

if (address =- 1

instruction.s address =0;

instruction.r-address =0;

while (count !=0

instruction.rnsw-selector =--count;

instruction.am2910_opcode = 14;I
instruction.branch address = 0;
instruction.branch-opcode = 0;
instruction.write opcode = 0;
load-instruction();

instruction.an2910_opcode = 3;I
instruction.branch address = program counter;
inst.': ,1- ion. branch _c--rie = 2;
instruction.write opcode =2;
load-instruction(;

g* enerate-receive */

vodgenerate-send I unsigned short address

unsigned short count =2;

reset-instruction();

instruction.s address =address;U

instruction.r address =address;

if (address == 0

instruction.f-address = 1;3

while count !=0

instruction.msw-selector = --count;

instruction.am2910_opcode = 14;
instruction.branch-address = 0;
instruction.branch-opcode = 0;
instruction.read_opcode = 0;

load-instruction(';
instruction.am2910_opcode = 3;
instruction.branch-address = program_counter;
instruction.branch-opcode =3;
instruction.read opcode = 2;I

/* generate-send *

void load-boot I char *path

FILE *file;
unsigned short length;
unsigned short offset;I

if I file = fopenl path, "rb" (- FILE *)NULL 3

8. Appendix(~': loadfpp program source 139

fprintf(stderr, "ERROR: unable to open for read Qs'\n", path
exit(-1)

if (fread(&header, sizeof(header), 1, file 1

fprintf(stderr, "ERROR: unable to read header\n' I
exit(-1 1

program counter =0;

reset instruction(I
load-instruction(I

length = header.a-data. / sizeof(FPP_DATA)

for (offset = 0; offset ! length; offset-+-

generate_receive(offset I
#ifdef DEBUG

generate_send(offset
#endi f

reset instruction()
instruction.am2910_opcode = 3;
instruction.branch opcode = 12;
instruction.branch address =program_counter;

load-instruction(Y;

poke(base, buffer, sizeof(buffer)K

fciose(file
/I load-boot */

void load-data(char *path

FILE *file;
unsign-d short length;
un~iyned shor offset;
FPP DATA w buffer;
FPP_DATA r-buffer;

start processor);

if I(file = fopenl path, "rb" I =(FILE *)NULL

fprintf(stderr, "ERROR: unable to open for read '%s'\n", path
exit(-1 1

if (fred(&header, sizeof(header), 1, tile 1

fprintf I stderr, "ERROR: unable to read header\n" K;
exit(-1 1

length = header.a data / sizeof I Fi:?_DATA I
fseekl file, N_DTAOFFI header), 0 K;

for (offset = 0; offset !=length; offseta++

if (fread(&w_buffer, sizeof I FR? DATA), 1, file 1

fprintf(stderr, "ERROR: unable to read data\n" I
exit(-1 1

send data(& w buffer.n-sw I
send-data I &w buffer.ls4

#ifdef DEBUG
receive data(I rbuffor.rsw
receive-data(&r bzffer.!sw

if Iw buffer.rnsw !=r bfer.Tsw I w bafter. lsw r bjffer.lsw

fprinifl stderr, "ERROR: catal~u), w=%C4x%04x, r=%C4x%14x\n",
offset, w buffer.msw, w ruffer. Isw, r huffer.msw, r buffer.lsw I
exit(-l1;

U

140 Annual Report: Digital Emulation Technology Laboratory Volume 1. Part I 3
#endif

fclose(file);
/* load-boot */

void loadcode(char *path)

FILE *file;
unsigned short length;
unsigned short offset; 3
stop processor();

if ((file = fopen(path, "rb")) (FILE *)NULL

fprintf(stderr, "ERROR: unable to open for read '%s'\n", path
exit(-1);

if (fread(&header, sizeof(header), 1, file) 1

fprintf(stderr, "ERROR: unable to read header\n");
exit(-1)

program_counter = 0;

length = header.a text / sizeof(FP? CODE)
fseek(file, NTXTOFF(header), C

for (offset = 0; offset.!= length; offset-,

if (tread(&instruction, sizeoft FPP _CODE), 1, file)

fprintf(stderr, "ERROR: unable to read code\n"
exit(-1);

load-instruction();

poke(base, buffer, sizeof(buffer) 3
fclose(file);

/* load code */

;define PROGRAM argument[0 I
#define ARGUMENT argumentf argument number

void maln(int numberargument, char argument) 3
int argument _number 0;
char name[2561 ;
char path(256J;

initialize-environment(":HOXE:ENVIRONMENT");

if (--numberargument == 0

fprlntf(stderr, "usage: %s <7ae>=<path>...<name>=<path>\n", PROGRAM
exit(C); I

wne (argument number- ru-beZ arqu7ent

if C sscanf(AROGJMJN7, "%i'= =%s", rame, path = 2 I
fprintf(stoerz, "ER.CR: urable tc p.rse arqunert '%s'\n", ARGUMENT

exit(-1); 3
C C value = aeterv (na-e)= LL

fpr.ntfC stoout, "iC : '%S' rot '3nc -n env-rcnrrentr ", name
exit(-1

I

8. Appendix C: loadfpp program source 141

it sscanf(value, "%Ix;%x;%x;", &bs~ l"t type) 3

fprintf (staoout., E-pPO: -,n-aole to parse '%s %s-\n", 7 ame, va.,e

exit(-2 1

fprintf C stdout, "loaaIng %s\n", na,,e
load boot(path C
load data(path C
load-code(path C

fprintf(stdout, "starting %s\n", ndme
start processor C

exit(0 C
/I main ~

